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A new class of patterns, composed of repeating patches of asymmetric intensity profile, elicit strong per-
ception of illusory motion. We propose that the main cause of this illusion is erroneous estimation of
image motion induced by fixational eye movements. Image motion is estimated with spatial and tempo-
ral energy filters, which are symmetric in space, but asymmetric (causal) in time. That is, only the past,
but not the future, is used to estimate the temporal energy. It is shown that such filters mis-estimate the
motion of locally asymmetric intensity signals at certain spatial frequencies. In an experiment the per-
ception of the different illusory signals was quantitatively compared by nulling the illusory motion with
opposing real motion, and was found to be predicted well by the model.

© 20009 Elsevier Ltd. All rights reserved.

1. Introduction

Most observers experience very strong illusory movement
when viewing patterns such as Donguri (Fig. 1) and Rotating
Snakes (Fig. 2) (Kitaoka, 2003). These patterns are composed of im-
age patches which have an asymmetric intensity profile. For exam-
ple, consider a narrow slice in the middle region of one of the ovals
in Donguri, as shown in Fig. 3a. (The Japanese word “donguri”
translates to “acorn”.) Its monochromatic intensity image can be
described as a white and a dark bar (the boundaries of the oval)
next to different shades of gray. Referring to Fig. 3b, from the high-
est intensity (the white bar) the intensity drops about twice as
much on the right than on the left side. Similarly, from the lowest
intensity (the dark bar) the intensity rises about twice as much on
the right than on the left. Thus, at the two bars the change of inten-
sity in the right and left neighborhood is different. Informally we
say that the pattern is asymmetric. Patterns with such intensity
profiles create a very strong illusory effect. The perceived move-
ment is a drift from the intensity extremum in the direction of les-
ser intensity change (i.e. from the white bar to light gray, and from
the dark bar to dark gray) (Kitaoka & Ashida, 2003).

The illusory movement is experienced under free viewing con-
ditions when one moves the eyes, and it is perceived in non-central
vision. It stops if steadily fixating after about 6-8 s. The perceived
motion is a drift, whose direction depends on the intensity rela-
tionship of the pattern elements. Chromaticity is not necessary
for the illusion, but enhances the effect in some patterns (Backus
& Orug, 2005; Kitaoka, 2006). The illusion depends on the size of
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the image patterns. For medium sized patches such as Donguri,
motion occurs in a patch when it is viewed in the periphery. Smal-
ler patches give illusory motion closer to the center of the retina.
Blur reduces the illusion in peripheral vision, but enhances it in
central vision. The illusory effect is more forceful if a pattern con-
sists of many patches, and the patches are at multiple sizes. It is
stronger when the patches are circularly organized, but also exists
for columnar and other arrangements.

It is generally considered that the illusory effect was first ob-
served in patterns with circularly organized sawtooth luminance
grating named the staircase illusion (Fraser & Wilcox, 1979) and
the peripheral drift illusion (Faubert & Herbert, 1999) (see
Fig. 18). Ashida and Kitaoka (2003) showed that the effect is much
increased if the sawtooth luminance profile is replaced by step
functions with intensities in the same order as in Donguri (i.e. light
gray-white-dark gray-black), and if the large patches are replaced
by many small ones. In Kitaoka and Ashida (2004) the authors pre-
sented patterns with continuously increasing intensity ramp-like
profiles, which are perceived in central and close to central vision,
and Kitaoka in (2006) proposed a classification of the different
intensity profiles giving rise to the illusory effect.

A number of hypotheses for the illusory motion have been pro-
posed. The dominant idea originating from Faubert and Herbert
(1999) is that temporal differences in luminance processing pro-
duce a signal that tricks the motion system. The theories differ in
how this signal is produced. Faubert and Herbert suggest that
eye movements or blinks need to trigger an image motion, and
the different motion signals (due to differences in intensity) are
integrated over large spatial areas. Backus and Orug (2005) focus
on the perception during fixation and hypothesize that motion is
not necessary, but a motion signal is triggered from the change
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Fig. 1. Variation of Donguri pattern. In peripheral vision most observers experience
rotary movement. The direction in the circular arrangements alternates, with
counter-clockwise direction in the upper left.

of the neural response over time. Differently strong contrasts and
intensities cause different neural response curves over time
(Albrecht, Geisler, Frazor, & Crane, 2002). As a result the phase of
the signal is estimated erroneously as time passes and a motion
signal is triggered. Their model also introduces the effect of adap-
tation which can account for the smooth perception under fixation
over a few seconds. This effect may exist in addition to the one dis-
cussed here. Conway, Kitaoka, Yazdanbakhsh, Pack, and Living-
stone (2005) discuss the illusory motion effect when flashing the
pattern. Their viewpoint is that small eye movements refresh
retinal stimulation, promoting new onset responses in the stimu-
lated area on the retina. Thus the system has available a stimulus
consisting of pattern frames interlaced with frames of the pattern’s
average intensity. Using psychophysical and physiological experi-
ments Conway et al. (2005) argue that in addition to signals cre-
ated by the differences in intensity processing, a signal analogous
to the reverse phi motion (Anstis, 1970) is created. Reverse phi mo-
tion is an image motion effect caused by reversing the contrast in
some frames of a video sequence. It is easy to explain that the
flashing illusion will produce an apparent motion (phi motion) in
the direction of the perceived motion. On appearance of the pat-
tern the net motion of the pattern is in the direction described be-
fore and on disappearance it is in the opposite direction. In our
opinion the illusory effect under free viewing and the effect when
flickering the pattern are not the same. We observed that for the
reduced experimental stimuli the latter is experienced much stron-
ger than the former, and it is experienced even by observers who
do not have the effect under free viewing. We therefore do not be-
lieve that Conway et al. provide a sufficient account of the illusion.

We propose that the main reason for the illusion under free
viewing conditions is erroneous estimation of the image motion
due to involuntary fixational eye movements. Work by Murakami,
Kitaoka, and Ashida (2006) implicates drift eye movements.! In

1 The drift movements, one of the three fixational eye movements, are defined as
incessant random fluctuations at about 1-30 Hz, quite large (~10 min of visual angle)
and fast (up to 2-3°/s) (Eizenman, Hallett, & Frecker, 1985). They have greater
amplitude after a saccade (Ross, Morrone, Goldberg, & Burr, 2001) than during steady
fixation.

particular, the authors showed a correlation between the ampli-
tude of drift movements in different observers and the strength
of their illusory perception. Further evidence for the role of drifts
in this illusion comes from the fMRI studies of Kuriki, Ashida,
Murakami, and Kitaoka (2008). Comparing the snake illusion with
a control stimulus, they found significantly increased activity in
motion area MT+ (also called V5) when eye movements were pres-
ent, but no increase in the absence of eye movements.

The small eye movements cause a change of the image on the
retina and trigger the estimation of a motion field. This motion
field is due to rigid motion and thus has a certain structure. Under
normal circumstances the vision system estimates this image mo-
tion and compensates for it, i.e. the images are stabilized (Muraka-
mi, 2004; Murakami & Cavanagh, 1998). Even for asymmetric
signals, the vision system estimates the correct 3D rigid motion
using the average of all the motion vectors in the patterns. How-
ever, a mis-estimation occurs at certain locations in the image.
The difference between the estimated rigid motion field and the
erroneously estimated image motion vectors gives rise to residual
motion vectors. These residual motion vectors are integrated over
time and space causing the perception of illusory motion in the
image.

The dominant model for motion processing in humans and
other mammals is the motion energy model (Watson & Ahumada,
1985; Adelson & Bergen, 1985), and it has been found to be consis-
tent with the physiological responses in primary visual cortex
(Albrecht & Geisler, 1991). Motion is found from the response of
multiple spatio-temporal filters, which are separable in space
and time. The spatial filters are symmetric. The temporal filters,
however, are asymmetric. This is because real-time systems have
causal filters, which are filters that receive as input data from the
present and the past, but not the future. If such filters were sym-
metric, the processing would be delayed by half the extent of the
filter. Since early responding is valuable, the temporal responses
are asymmetric in time, with greater weight given to recent input
than older input.

As will be shown, causal filters mis-estimate the image motion
in asymmetric image signals for certain spatial frequencies. That is,
if we apply differently sized motion filters to some asymmetric
pattern, we will get mis-estimation for a range of filter sizes. The
resolution of the eye decreases from the center to the periphery.
Thus, the size of the motion energy filters increases as we move
from the center to the periphery, and their spatial frequency de-
creases. The illusory motion patterns consist of repeated patches
of asymmetric signals, and for some of these patches the resolution
of the eye is such that it leads to erroneous motion. For most of the
known patterns the mis-estimation occurs at the periphery. For
very small patterns with high frequency the perception is closer
to the center.

The next two sections will explain in detail the reasons for the
mis-estimation of image motion. The reader not interested in the
technical details may want to skip these sections. We summarize
here the main concept: Fig. 4 illustrates a spatio-temporal filter
with symmetric impulse response in the spatial domain, and with
asymmetric impulse response (Burr & Morrone, 1993) in the time
domain. The spatial response may be modeled as a sinusoid of
certain frequency enveloped by a symmetric function. The tempo-
ral response may be modeled as a sinusoid enveloped by an asym-
metric function. Consider filtering the Donguri signal with a
whole range of spatial filters of increasing size (and decreasing
frequency). Let us go ahead in the paper and take a look at
Fig. 8b-d, which show the amplitude of the response from filter-
ing a single bar in Donguri. A filter of high spatial frequency will
respond to the two edges bordering the bar. A filter of low spatial
frequency will not recognize the edges, but only have one re-
sponse to the bar. However, for intermediate frequencies, with
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Fig. 2. Rotating snakes.

the period of the sinusoid about as large as the bar, the two edges
will effect each other during filtering leading to an amplitude re-
sponse curve of a larger peak merged with a smaller peak. In es-
sence, for filters of these frequencies there is poor frequency
localization. While the filtered signal should have the frequency
of the filter everywhere, the actual value varies along the signal.
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If now we estimate image motion by applying to this signal tem-
poral asymmetric temporal filters, we find that the temporal fre-
quency responses from a movement to the left and a movement
to the right will be significantly different. The image motion esti-
mated as the average over the signal is larger for left motion than
for right motion.
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Fig. 3. (a) Slice through a patch in the Donguri pattern. (b) Its intensity profile. (c and d) Spatio-temporal picture of the patch moving to the left and to the right. I(x) denotes
a static image. Io(t) and Io(—t) denote the signal at a point over time, where the — sign in Io(—t) indicates that the profile in (d) can be obtained by reflecting the profile in (c) to
obtain the inverted motion direction.
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Fig. 4. Illustration of biological implementation of spatio-temporal filter (similar to
Fig. 6 of Adelson and Bergen (1985)). The spatial and temporal impulse responses
are shown along the margins. Their product is shown schematically in the center.

The idea of anisotropic temporal filtering was first proposed by
Ashida and Kitaoka (2003), who modeled image motion estimation
using a differential local motion model with asymmetric temporal
derivative filters. This local model, however, requires the filters to
have larger weight in the past and smaller weight in the present.
Furthermore, it cannot explain the estimation at different resolu-
tions of the pattern. For this we need to look at the different
frequencies.

2. Motion estimation in the frequency domain

The monochromatic light distribution on the retina can be de-
scribed as a function I(x,y,t), which specifies the intensity at a
point (x,y) at time t. We refer to the instantaneous light distribu-
tion at time t = 0 as the static image Ip(x,y) = I(x,y,0). Let us as-
sume that within a small interval the change of the image can be
described as a translation with constant motion velocity 2 of hor-
izontal and vertical speed components (u, 7). Thus, the intensity
functions at time ¢ and at time O are related as

I(x,y,t) =1(x — ut,y — vt,0). (1)

From the three-dimensional Fourier transform of this equation, we
obtain (Watson & Ahumada, 1985; Adelson & Bergen, 1985)

UWy + vy = —@y. (2)

where wy,, w, denote the spatial frequencies and w, the temporal
frequency. This equation defines a plane through the origin in the
three-dimensional frequency space.

To simplify the analysis, in the following sections we consider
only images with bar-like structures parallel to the vertical dimen-
sion and the motion component perpendicular to the bars. Thus, let
us consider a two-dimensional case of I(x,t), that is a signal I(x)
which is shifted. Eq. (1) then simplifies to

I(x,t) = I(x — ut,0), 3)
and the image motion constraint amounts to
Uwy = — Wy, (4)

defining a line in the two-dimensional frequency space. The velocity
u can be found from the ratio of the temporal and spatial frequency,
i.e. as

Tp— (5)

Fig. 3c and d illustrate the spatio-temporal signal for an image line
in the Donguri pattern moving with velocity u=1 and u = -1,

respectively. Since the spatio-temporal signal I(x, t) is obtained sim-
ply by shifting the signal Iy(x), it has the same structure in the spa-
tial and temporal domain. Referring to Fig. 3c and d, a spatial cross-
section through I(x,t) gives a shifted version of I(x). A temporal
cross-section gives a shifted, stretched and maybe reflected version
of Io. For unit motion to the left (u = —1), the cross-section is a
shifted signal Io(t), and for unit motion to the right (u = 1), it is
the shifted signal Io(—t) (i.e. the reflection of Iy(t)). The amount of
stretch encodes the velocity. Thus, later when we analyze temporal
filtering, instead of examining the temporal cross-section, we can
look at the spatial cross-section.

3. The filters

The spatio-temporal energy filters for extracting motion are
separable in space and time. This just means that the filters can
be created as the product between a spatial and a temporal filter.
For the analysis this means that the spatio-temporal signal may
first be convolved with the spatial filter and the result may then
be convolved with the temporal filter.

The filters need to be localized in image space as well as in fre-
quency space. We follow the common formulation of modeling a
filter for detecting the local frequency wy, as a complex function

g(y) = p(y) - exp(2micwoy). (6)

exp(2Tiwey) = cos(2Tmyy) + isin(2mayy), called the carrier func-
tion, is a complex sinusoidal for detecting the signal’s component
of frequency @y, and p(y), called the envelope function, localizes
the sinusoid in image space. The complex filter really consists of
two filters in quadrature, the even cosine components and odd sine
components. For example, in the spatial domain, the even compo-
nent will respond maximally to bar-like signals and the odd compo-
nent will respond maximally to edges. The magnitude of the output
of the combined complex filter does not depend on whether the sig-
nal is even or odd, or any mixture thereof. As a result, complex mo-
tion filters (Adelson & Bergen, 1985; Watson & Ahumada, 1985)
extract motion independent of the phase of the signal, that is inde-
pendent of the position of the signal within the receptive field at
certain time, and independent of the sign of the contrast.

3.1. Modeling the spatial and temporal filters

We model the spatial filters as Gabor functions (see Fig. 5a)
with impulse response

1 —x? .
—eX - exp(2TimyX), 7
o, p(z(I%) p( ) (7)

where the envelope is a Gaussian. @y is the preferred frequency and
oy determines the support of the filter, which for convenience is
plausibly chosen as g, = -L.. The transfer function of the Gabor filter,
which is obtained as its Fourler spectrum, amounts to G(w; w,) =
exp(—2m2 02 (w — wy)? ) that is a Gaussian centered at w, and of
standard deviation 5—. The Gabor of frequency wy, thus extracts
the signal’s energy m a small frequency band around w,. Fig. 5b
illustrates the amplitude of G. Its phase is zero (i.e. there is no imag-
inary part), because the envelope of the Gabor is symmetric around
0. In general, symmetric filters around a point different from 0 (for
example, a time-shifted Gabor) have a phase response that is line-
arly related to the frequency.

The temporal filter has an envelope described by a function
with first-order exponential decay. We use the formulation pro-
posed in (Chen, Wang, & Qian, 2001; Shi, Tsang, & Au, 2004), which
models the envelope as a Gamma probability density function of
parameter I'(2), resulting in temporal filters T(t) of the form

Gx;0y) =
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Fig. 5. Gabor filter of w, = 1: (a) impulse response. The full (blue) line denotes the real (even) part and the dashed (red) line the imaginary (odd) part. (b) Amplitude
spectrum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Lexp(—1)-exp(2miot +id,)) for t >0

0 for t<0 ®)

T(t; ) = {

where o is the temporal frequency. 7, the decay velocity, is a time
constant for the envelope, which we chose as 43—0[ to make the wave
of the temporal filter similar to the Gabor. ¢, is a phase offset of the
sinusoid, which is chosen such that the odd components of the filter
sum to zero.

Fig. 6a illustrates the impulse response of this filter. Since the
temporal filter extends from the past to the present, it actually
estimates the frequency in the recent past. This can also be seen
from the spectrum of the filter. As can be observed from Fig. 6b
and c, the amplitude of T(t) is still a hat-type function, centered
at e, similar to the Gabor. However, the phase of T(t) is non-zero,
indicating a shift of the response in image domain. It is approxi-
mately linear for w close to w; and deviates from linearity for val-
ues farther from w;.

3.2. Definition of filtering

When analyzing image motion, we can think of the filtering as a
spatial filtering followed by a temporal filtering. First, the image
sequence I(x,t) is filtered with a spatial Gabor, G(x; w,) to obtain
the image sequence T(x, t; wy) as

iix.t:00 = [ 10,06~ y: o)y

The idea is that the Gabor obtains the signal’s component of fre-
quency wy. Thus, at this stage it is assumed that the dominant spa-

0.3

0.4

0.3

[Fe(e)]

0.2

0.1

tial frequency of I(x,t;w,) at every point (x,t) is w,. Second,
I(x,t; ,) is filtered with the temporal filter T(t;w,) to obtain

1(x,t; wy, ;) as

0 ~
1(x,t; wx, ;) :/ I(x,57004)T(t — s; 00)ds.

Here it is assumed that | 7(x7 t; wy, ;)|? returns the motion energy of
I at image point (x,t) at frequencies (wy, ;).

Since the spatial and temporal filters are complex valued, the
complete spatio-temporal filter can be imagined as four separable
filters (the even and odd components of each, the spatial and tem-
poral filter), whose outputs are summed according to the rules of
complex numbers to arrive at the motion energy.

Fig. 7 illustrates the filtering on the Donguri signal. The spatial
and temporal frequencies in this example are set to one (the criti-
cal frequencies, to be explained later). Notice, that the temporal
filter output is shifted with respect to the signal; to the right for left
motion and to the left for right motion.

3.3. Image motion estimation

In the following we will analyze motion estimation as a func-
tion of spatial frequency. The image motion of a patch (or in the
analysis a line through the patch), is computed from all the mea-
surements in the patch in two computational steps: first, we esti-
mate at every point the (best) velocity. Second, we compute the
velocity of the patch as the weighted average of point-wise velocity
estimates.

Arg(R(w))

(b)

Fig. 6. Temporal filter of @, = 1: (a) impulse response. The full (blue) line denotes the real part, the dashed (red) line the imaginary part. (b) Amplitude spectrum. (c) Phase
spectrum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Filtering of the Donguri signal at the locations of the horizontal and vertical cross-sections in Fig. 3¢ and d: (a) Spatial filtering the intensity signal with a Gabor of
frequency 1. (b and c) Temporal filtering the signal in (a) with a frequency of 1 for left and right motion.

Specifically, given a spatial frequency wy, the signal I(x, t) is fil-
tered with the spatial Gabor to obtain I(x, t; y). Then at some time
t (all t are equivalent, since the motion is simply a shift of the spa-
tial signal) at every image point x, we find the dominant temporal
frequency wy,. To do so we filter with a range of temporal filters
T(t, ;) of different frequencies w; and choose the filter response
with maximum energy. (Ideally according to the motion con-
straint, only one temporal frequency filter should return non-zero
energy.) This way, we find at every point x a local velocity estimate

9)

U)[O

Wy

ﬂ("? wx)

and its corresponding energy

|T(X, t; @, 0, )|

Then the motion of a patch is found as the average of energy
weighted velocity measurements:

S 0| 1%, 5 0, )

(o) ~ )
Zx‘ I(X’ £; Oy, wfo)‘

(10)

4. The effect of filtering on Donguri

Fig. 8 illustrates the effect of spatial filtering on Donguri. At fre-
quencies w, larger than the reciprocal width of the bar, the Gabor
filter detects the two edges at the left and right of the bar (Fig. 8b).

At frequencies significantly smaller than the reciprocal width of
the bar, the Gabor detects the bar (Fig. 8c). The amplitude of the re-
sponse thus has either one or two well separated peaks. However,
for frequencies of wy close to the reciprocal width of the bar, there
is something in between one and two responses. The amplitude
function becomes asymmetric with two merging peaks, a larger
on the right and a smaller on the left (Fig. 8d). Let us call these fre-
quencies the “critical frequencies”.

As is well known from the uncertainty principle, there is a limit
on the accuracy of localization in image and frequency domain. The
Gabor (which is the filter with best localization in joint image and
frequency space) cannot guarantee perfect localization of the sig-
nal. Because of the “hat” profile of its Gaussian envelope, the fil-
tered signal I(x,t;w,) will not always have local dominant
frequency wy. We can understand the poor localization of frequen-
cies from the phase responses. Referring to Fig. 8e-g, the phase re-
sponses are (nearly) linear for w =1 and w =2, but the phase
response deviates significantly from linearity for the critical fre-
quencies, which is an indicator for poorly estimated frequencies.

When now estimating on the asymmetric signal I(x, t; w,) image
motion with asymmetric temporal filters, left and right motion are
estimated of different value. Fig. 9 shows that for the critical fre-
quencies, motion to the left (u = —1) leads to larger velocity esti-
mates than motion to the right (u = 1).

We can intuitively understand this estimation from the ampli-
tudes of the signal and the filter. We convolve two asymmetric
signals. The temporal filter amplitude has more weight for larger
t and smaller weight for smaller t. Referring to Fig. 7b and c, for
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Fig. 8. (a) Bar in Donguri pattern. (b—d) Amplitude of bar filtered with Gabor of different frequencies wy. (e-g) Corresponding phase response. For better illustration, the range
of the phase (shown on the y-axis), since it depends linearly on the frequency has been scaled, so that in (e) it is twice and in (f) half the size of (g).

a left motion, signal I has a larger lobe for larger t and smaller lobe
for smaller ¢, but for right motion the order is reversed.

Fig. 9 shows the local estimated velocity (as full, green line) at
every point on the bar. The corresponding amplitude is shown as
dot-dashed, red line, and the amplitude of signal I is shown as
dashed, blue line (in the spatial domain). Both amplitudes have
been scaled to allow for better visualization.

Because of interaction of the regions under the two peaks with
each other during temporal filtering, the local velocity (Eq. (9)) var-
ies significantly along the signal. Most significant, there is overes-
timation of velocity at the right peak for left motion, and
underestimation of temporal energy at the left peak for right
motion.

This is further demonstrated in Fig. 10, which shows the esti-
mated energy for three different temporal frequencies. As a result

of this local mis-estimation, the average velocity (Eq. (10)) is larger
for left motion than for right motion.

For higher spatial frequencies (Fig. 8b) the peaks are well sepa-
rated and do not interact, and for lower spatial frequencies (Fig. 8c)
there is only one peak. Thus, in both cases there is no significant
difference between left and right motion.

Two final notes: Throughout the demonstration we have used a
normalized speed of 1 unit, but the findings apply to any velocity. A
different velocity, of say value «, amounts to stretching/compress-
ing the signal I(t) to 7(5) Then a temporal response of w; for the
unit velocity will correspond to a temporal frequency response of
o, in the stretched signal. Thus, all velocities will be mis-esti-
mated by the same percentage.

The size of the motion filter (with non-vanishing energy) in our
implementation is about five times the bar width. (The spatial
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Fig. 9. Velocity estimation at critical frequencies. The dashed (blue) line denotes
the scaled amplitude of I. The full (green) line denotes the local estimated velocity
(Eq. (9)) and the dot-dashed (red) line denotes the corresponding scaled amplitude.
(Note: because the temporal filter estimates the motion at a point earlier in time,
the maximum value for [ is found to the right of the stronger edge for left motion
and to the left of the stronger edge for right motion). The estimated average velocity
(estimated using Eq. (10)) is larger for left than for right motion. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

component with significant energy is four times and the temporal
component is two times the size of the bar, see Fig. 5). Our analysis
is a simulation of the continuous derivation. Clearly, our vision sys-
tem does not have motion filters for every position on the retina.
But if we assume a non-biased distribution of the filter locations
(for example, uniform, or random), we can say that statistically
the filter outputs should approximate the continuous signal.

5. Experimental evaluation
5.1. Donguri and rotating snakes
The following figures show the estimated image velocity as a

function of spatial frequency. The estimates were obtained by sim-
ulations as described in Section 3.3. That is, the motion of a pattern

element is computed as the energy weighted average of the local
velocities of all the points on the signal (Eq. (10)). Fig. 11a shows
the estimated velocity for left and right motion for a large range
of frequencies, demonstrating that significant differences occur in
a small range around frequency w = 1. Fig. 11b zooms in on a
neighborhood around the critical frequencies, but shows only the
difference in velocity between estimated left and right motion.
Let us clarify, higher frequencies (of the Gabor filter) in our plot
correspond to higher resolution of the perceived image, that is fil-
ters located closer to the fovea.

Referring to Fig. 11a, the estimates fluctuate in the neighbor-
hood of the critical frequencies. There is an overestimate for left
motion and an underestimate for right motion at w = 1. Both
velocities are overestimated for a bit larger w (1.25), and both
are underestimated for a bit smaller w (0.75), but at these frequen-
cies their differences are not significant.

To test the validity of the approach, we experimented by vary-
ing the parameters in the motion estimation. In particular, we var-
ied the range of possible temporal frequencies (with the smallest
range [0.6...1.4] and the largest unlimited), the size of the spatial
and temporal filters, and the weighting of the local velocity esti-
mates. Besides the energy, we used the absolute value of the filter
response and its cube for weighting. We found that for some
parameter settings, both left and right motion were underesti-
mated at w = 1. However, for all settings, there was a significant
difference at the critical frequency, with the left motion being lar-
ger than the right. Based on these experiments, we state the gist of
our finding as: Estimated left motion is larger than estimated right
motion for the critical frequencies.

Next, consider the Rotating Snakes pattern (Fig. 2) and take
three cross-sections through one of its units to obtain three quali-
tatively different profiles. Referring to Fig. 12, the first cross-sec-
tion is at the center, providing a profile just like Donguri’s, the
second cross-section is in the upper half, where all intensity re-
gions have equal width, and the third is close to the top of the unit,
where the intermediate intensity regions (yellow and blue) be-
come narrow bars and the black and white regions have large ex-
tent. We refer to these profiles as “Donguri”, “Bars”, and “Steps”,
respectively. Linear arrangements of the corresponding monochro-
matic signals are shown in Fig. 12b and c. Fig. 13 plots the differ-
ence in estimated image velocity between left and right motion
for the three functions. The simulations show that for all three sig-
nals there is a range of frequencies for which left motion is signif-
icantly larger than right motion. The difference is significantly
larger in Donguri than Bars, and is larger in Bars than Steps.

5.2. Nulling experiment

The strength of the illusory perception varies significantly be-
tween observers. The relative strength of the perceived motion in
different signals, however, can be used to evaluate the model.
We quantitatively compared the perception of the three signals
above by nulling the illusory motion with opposing real motion,
similar as in Murakami et al. (2006). Nine naive subjects partici-
pated in the experiment.

5.2.1. Methods

The signals were arranged on three concentric rings, with the
middle ring three times the width of the inner and outer rings.
Each ring consisted of 40 signal elements, and the flanking rings
were phase shifted with respect to the middle ring by a quarter
of the element (Fig. 15). The linearly calibrated intensity values
of the four regions were 0.3, 1, 0.7, 0, where O is black and 1 is
white. The width of the bar was 1 unit and the other regions were
3 units in Donguri and Stairs, and all regions were 2 units in Bars
(as shown in Fig. 12). In addition to these three signals, we also
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Fig. 12. Three different illusory intensity signals in Snake.

tested a Donguri signal of reduced contrast with the intensities 3/8,
1, 5/8, and 0. Simulations for this signal (Fig. 14) show that the
range of frequencies with left and right motion being significantly
different is smaller than in the original Donguri, but the predicted
value at the maximum is nearly the same, actually slightly larger.

Observers were sitting at a distance of 45 centimeters in front of
the 17” LCD screen and observed the patterns binocularly. At this dis-
tance the rings covered 14° of visual field with the width of the three
rings covering 1.7°. At the center of the patterns was aring of 1° filled
with random black and white dots for gaze control. Subjects were in-
structed to look inside the disc freely. For each signal two patterns
were created, one with the intensity regions in the order shown
above inducing counterclockwise motion, and one obtained as the
mirror reflection of the former, inducing clockwise motion.

Using Matlab, an interface was created that allowed to play vid-
eos showing these patterns rotating slowly clockwise or counter-

clockwise. The speed of motion could be set in the range of
0.06—0.6°/s by the step of 0.06°, where 1°/s corresponds to one de-
gree of polar angle per second.

The speed of motion that gave the subjective stationary percept
was found with the Method of Adjustment. Observers were first
presented with the static pattern. They then adjusted on a slider
the speed of motion, upon which a video of the pattern drifting
at the selected speed appeared in the location of the static pattern.
Observers increased and decreased the speed until they found the
speed, which gave rise to the perception of a stationary pattern.

5.2.2. Results

Fig. 16 displays the measurements. The speed nulling illusory
motion in Donguri was in the range of 0.12—0.36°/s. All participant
perceived Donguri the strongest, and Snake stronger than Stairs.
None of the subjects measured a significant difference between
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Fig. 15. Example of experimental stimulus.

the original Donguri and Donguri with decreased contrast, and be-
tween clockwise and counterclockwise stimuli. Fig. 17 compares
the predictions to the mean of measurements. The values shown

are the ratio of the nulling motion in Donguri to Snake, Bars and
Reduced Donguri, and were obtained as the average over clockwise
and counterclockwise patterns over all subjects. The predicted mo-
tions were found as the estimated maximum difference between
left and right motion over all frequencies. The figure demonstrates
that our model predicts observed ratios between different condi-
tions of the experiment very well.

5.3. Peripheral drift and central drift

It is generally considered that the illusory motion effect was
first observed in the peripheral drift illusion (Fraser and Wilcox,
1979) (see Fig. 18). The intensity profile in this pattern is a saw-
tooth function. Such a function would not give rise to erroneously
estimated motion according to our model. However, luminance re-
corded at the neural level is usually modeled as a non-linear func-
tion of the actual intensity of the image. Following Backus and
Orug (2005), we consider two factors in our model: first, luminance
adaption, a logarithmic function modeling the relationship be-
tween recorded luminance and physical intensity (changes at high-
er intensity values are recorded with a smaller value than changes
at lower intensity values); second contrast adaptation, a sigmoid
function modeling greater sensitivity to the middle range than
the high and low ranges of intensities (see Fig. 19).

Kitaoka and Ashida (2004) created a series of patterns, which
they call central drift illusions, as they are perceived in central as
well as peripheral vision. For examples, see Sakura and Cendri in
Fig. 21. These patterns contain elements (the petal and ovals) with
(close to) linear intensity profiles, but in comparison to the periph-
eral drift illusion, the individual elements are separated by uniform
background. This separation increases the illusory effect.

Applying our luminance model to the actual intensities, we ob-
tain the luminance profiles shown in Fig. 20. Our model’s predicted
velocity differences between left and right motion for Sakura are
shown in Fig. 22. The petals in the model are four units (the bar
in Donguri is one unit). Thus, the critical frequencies of w =1 in
Fig. 22 corresponds to the period of the sinusoid being a } of the pe-
tal size. Fig. 22b compares the velocity differences in peripheral
drift, Sakura, and Cendri for a small range around the critical fre-
quencies. Our model predicts perceived illusory motion in the pat-
terns, with the effect being stronger in Sakura and Cendri than in
peripheral drift.

A similar signal, which Kitaoka (2006) calls Type I, consisting of
either white to medium gray elements on dark background or

CCW
A48 a

Cancellation velocity (degreefs)

Ccw

Donguri Bars

I 1 L

Steps

Red. Dong.

Fig. 16. Cancelation velocity in 9 subjects for clockwise and counterclockwise
illusory motion. Each color corresponds to one subject. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 18. The peripheral drift illusion (Fraser & Wilcox, 1979). In peripheral vision,
the circle appears to rotate slowly in clockwise direction.

medium to dark gray elements on white background, causes illu-
sory motion in the periphery (Fig. 23a). The corresponding profiles
may be considered smooth versions of the Donguri-profile. A sim-
ulation of the motion estimate, considering our luminance model
predicts the perceived motion (Fig. 23c). In this pattern one ele-
ment is chosen three units. Fig. 24 shows one of Kitaoka’s patterns
from this class, in which the two elements are combined for an
even stronger effect.

Let us note that contrast and luminance adaptations would not
effect the motion estimation in Donguri and Snake. The estimation
is very robust over luminance changes. As shown, the reduced
Donguri signal gives rise to very similar motion prediction.

6. 2D motion

The estimation of instantaneous 2D image motion still can be
imagined as a two-stage computational process. In the first stage,
causal filters estimate point-wise erroneous motion in the direc-
tion perpendicular to the spatial filter orientation (the 1D motion
component, also called normal flow, which is the projection of

Luminance adaptation

Contrast adaptation

Compound adaptation

Fig. 19. Model of neural luminance function.

the 2D motion vector on the tuning direction of the filter). In the
second stage normal flow estimates in different directions within
spatial local neighborhoods are combined and the 2D image mo-
tion of the patch is estimated.

We implemented the following simple motion algorithm to
demonstrate that the residual motion vectors are consistent with
the perceived illusory motion: at the critical frequency of the pat-
tern, at every image point we obtain the spatial frequency re-
sponses using a standard set of Gabor filters, and we estimate
the corresponding temporal frequency of maximum energy using
causal filters. Thus, we arrive at n equations of the form
Wy + 0y v=—w, with i=1,..n (11)
Then we compute the flow (u, v) of every pattern element by solv-
ing the over-determined system of n equations in (Eq. (11)) using
weighted least squares estimation, with the weights the energy re-
sponses of the filter outputs.
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Fig. 21. Sakura in gray: when fixating on the center, the outer petals appear to
move slowly clockwise and the inner petals move counterclockwise. B. Cendri
(same as Sakura): the ovals on gray background move from gray to white. W.
Cendri: the ovals on white background move from white to gray.

Fig. 25a and b show for the Donguri pattern the residual flow
vectors resulting from a horizontal and a vertical movement,
respectively. Each of the movements produces image motion on
most of the individual pattern elements. The motion is largest for
the elements with dominant edge direction perpendicular to the
movement, but even on elements oriented 60° away from that
direction there is some image motion. If we combine image mo-
tions from only two movements spaced at least 30° apart, we will
obtain image motion on all elements. We expect that our vision
system integrates the motion signals over a time interval of a
few eye movements. Since each movement produces image motion
in a large range of directions, this process should not be sensitive to
the particular directions of eye movements. Fig. 25c shows the vec-
tor sum of the flow fields due to the horizontal and vertical
movements.

7. Discussion
7.1. Signal integration

Estimation of local image motion is the first step in visual mo-
tion analysis. The local signals are input to many visual processes.
Some of the very basic processes are the estimation of our own mo-
tion, that is the relative motion of the eye with respect to the scene,
and the segmentation of the scene into different objects. While
causal filters create local erroneous motion signals in this illusion,
the strong perception of rotating patterns is due to these further
processes. First, using the retinal motion signals over the whole vi-
sual field, a 3D motion estimation process obtains the eye move-
ments (and the head and body movements if there are any), and
stabilizes the image. Second, a segmentation process using as input
the local motion signals together with information from static
cues, such as edges, texture and color, performs a grouping into cir-
cular elements of rotational motion.

According to our motion model all image motion in asymmet-
ric signals should be estimated with error. However, the errone-
ous estimation in the illusions is due to the motion signal from
drift movements (Murakami et al., 2006). We speculate that the
role of drift movements for this illusion lies in a better temporal
integration of the motion signal when compared to signals from
other movements. We know that images are computationally sta-
bilized. The drift motion is computed from the local motion sig-
nals over the whole visual field. Then the drift is discarded, and
the image signals over a time interval are integrated. This is com-
putationally feasible, because the drift motion is mostly a rotation
and does not depend on the structure of the scene. By fitting to
the whole image motion field a rotational motion field, which
only depends on three parameters, local motion vectors can be
estimated very accurately and reliably. On the other hand, head
motions and scene motions also involve translation, and the im-
age motion field then depends on the scene. Therefore, local mo-
tion estimation cannot be that accurate, and integration over a
time interval is more difficult.

The illusion appears a bit stronger when viewing the patterns
binocularly versus monocularly. This may be attributed to the re-
sponses of binocular motion signals. The drift movements in the
two eyes are independent. Any single directional movement gives
rise to erroneous residual image motion only on some parts of the
patterns (where the edges are perpendicular to the movement, as
can be seen in Fig. 25). Two different drift movements, thus, cause
erroneous image motion on more parts, and provide more informa-
tion for the integration into rotational motion.

Some observers, and especially many older people do not per-
ceive this illusion. We speculate that it is not a lack of involuntary
eye movements, but decreased sensitivity to motion in the temporal
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Fig. 22. (a) Difference in estimated velocity between left and right motion in Sakura. (b) Comparison of motion estimation between peripheral and central drift illusions.
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Fig. 23. (a) Gray shaded elements on bright and dark background. Dark elements on white move from dark to light. Light elements on black move from light to dark. (This is
opposite to the peripheral drift illusion!) (b) Luminance profile for the dark element on white background. (c) Difference in estimated velocity between left and right motion.

high and middle frequency range, as has been measured in older peo-
ple (Shinomori and Werner, 2003; Shinomori and Werner, 2006).

7.2. Relationship to geometric optical illusions

The concept of smoothing at certain scale as an explanation for
optical illusions is not new to the literature. Morgan and Moulden

(1986) and Morgan and Casco (1990) have proposed that bandpass
filtering (that is edge detection by computing derivatives on a
smoothed image) is the cause of a number of (static) geometric
optical illusions. For an example see Fig. 26a. The illusory elements
in this pattern are bars. As discussed in Fermiiller and Malm, 2004,
if we smooth a bar with a Gaussian of ¢ large enough to effect both
edges of the bar but not large enough for the two edges to merge,
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Fig. 26. (a) lllusory pattern “waves” - a perfect checkerboard pattern with superimposed squares - causes the perception of wavy lines (Kitaoka, 1998). (b) Demonstration of
the movement of edges under smoothing for a small part of the pattern. (c) A schematic description of the behavior of edge movement in scale space. The first row shows the
intensity functions of the two different bars, and the second row shows the profiles of the (smoothed) functions with the dots denoting the location of edges, which either

drift apart or get closer.

the location of the edges changes, as illustrated in Fig. 26c. For a
bright bar in a dark region (or a dark bar in a bright region) the
two edges drift apart. For a bar of medium brightness next to a
bright and a dark region the two edges move toward each other.
The latter case corresponds to the Donguri profile. The ¢ in the
Gaussian is the same as the ¢ in the Gabor of the “critical frequen-
cies”. Thus, at the “critical frequencies” the interaction of the two
edges causes a change in the location of the edges (defined as
the extrema in the first-order derivatives or zero-crossings in the
second-order derivatives). In this paper we showed, that at the
same time local frequencies are poorly estimated, which has an ef-

fect if image sequences are filtered asymmetrically in temporal
domain.

7.3. Summary of the paper

Temporal image motion filters are causal, i.e. they use data from
the past, but do not use data from the future. Such filters are asym-
metric giving greater weight to recent input than older input. In
this paper we showed that this asymmetry in the filters leads to
erroneous estimation of image motion for asymmetric signals at
certain scale. This is simply because of the universal uncertainty
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in estimating signals. We demonstrated the mis-estimation using
simulations. Then we tested our model quantitatively using differ-
ent signals with bar-like structures and found that it very well pre-
dicts the illusory motion perception. Based on these findings, we
hypothesize that this erroneous estimation explains the illusory
perception of motion in static patterns with repeated asymmetric
pattern elements under free viewing conditions.
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