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Abstract

Spatio-temporal segmentation of video sequences attempts to extract backgrounds and indepen-
dent objects in the dynamic scenes captured in the sequences. It is an essential step of video
analysis. It has important applications in video coding, video logging, indexing and retrieval,
and more generally in scene interpretation and video understanding. We classify spatio-temporal
grouping techniques into three categories: (1) segmentation with spatial priority, (2) segmentation
by trajectory grouping, and (3) joint spatial and temporal segmentation. The first category is the
broadest, as it inherits the legacy techniques of image segmentation and motion segmentation.
The other two categories place a higher priority on the accumulation of evidence along the tem-
poral dimension and are more recent developments made feasible by the increased availability of
computing power. For each category we provide a taxonomy of the techniques used to produce
meaningful pixel groupings.

The support of this research by the Department of Defense under contract MDA 9049-6C-1250 is gratefully
acknowledged.



1 Introduction

A natural description of a video is a decomposition into objects. The objects may include semantic
entities, or visual structures such as color patches. Segmenting objects automatically is one of
the most challenging tasks in video processing, even though human vision seems to achieve it
effortlessly.

Such a segmentation has numerous applications, including compact video coding, automatic
and semi-automatic content based description, film post-production, and scene interpretation.

Transmission of videos requires a great amount of compression, especially in wireless applica-
tions. The ability to extract backgrounds and moving objects makes it possible to eliminate the
redundancy related to the repetition of the same visual patterns in successive images.

For video description tasks, such as logging and annotation, automatic object extraction can
help in building high level indexes that take into account the fact that a scene is generally com-
posed of multiple entities of interest. A tool able to provide a structured representation and a
segmentation into objects is valuable as it facilitates visualization and annotation by a human
operator. Such annotations enrich raw video content with object-specific information, which can
then be used by search engines and interactive multimedia documents.

Automatic object segmentation is also useful in post-production, when special effects and visual
modifications must be independently added to background scenes and foreground action.

Finally, scene interpretation is largely dependant on object extraction. It can be performed
automatically in restricted contexts where a priori constraints can be enforced, such as sports
video understanding and video surveillance.

The broad variety of potential applications is mirrored by an equally broad variety of approaches
and specifications. Objects can be defined at several levels. The most familiar level to humans
is the semantic level, where each part of an image (and subsequently of a video) is labeled as
its counterpart in the real world: a hand, a person, a car. This requires an interpretation of the
scene, which is subject to the ambiguity and variations associated with subjective evaluation: two
different persons may define objects of interest differently, and thus prefer different segmentations.

Except in restricted domains, the semantic level is generally not computable automatically,
since it requires some amount of scene interpretation. Therefore segmentation methods rely
on concrete and measurable segmentation criteria that define non-semantic entities. Two main
types of methods are used with videos, alone or in combination: motion-based methods, and
color /texture-based methods.

Motion based segmentation methods make implicit modeling assumptions about the video cap-
ture process, which associates object geometry and displacements in the scene with specific appar-
ent motion in the video. Underlying hypotheses include rigid body motion and spatial smoothness
of motion. When these hypotheses are verified, motion segmentation reaches, at least partly, the
semantic level, by its ability to extract real objects moving independently.

If these hypotheses are not verified, lower-level structure can still be extracted, based on visual
features such as color and texture. As is experienced in image segmentation, these have a poor
semantic value, since a visual object may be composed of several distinct colors or, less frequently,
separate objects may have similar colors. Nevertheless, they provide a structured representation
of raw video data, by extracting from the spatio-temporal volume the pixels spanned by patches
of homogeneous visual characteristics. A patch segmentation is useful in itself as a low-level



representation, or as an input for higher level modules, such as motion and event analysis.

2 Overview of Classification

Spatio-temporal grouping manipulates features embedded in the spatio-temporal volume, the
video stack, produced by the stacking of the individual consecutive video frames. The spatial and
temporal dimensions of this volume can be handled either separately or simultaneously.

Most approaches handle these two types of dimensions separately, making a distinction between
spatial segmentation, which groups features using spatial coherence criteria, and temporal track-
ing, which groups features using a temporal invariance hypothesis. The order in which spatial and
temporal groupings are performed leads to two different approaches: segmentation with spatial
priority, and trajectory grouping.

Segmentation with spatial priority first focuses on the spatial segmentation of each frame in
the video stack. Spatio-temporal groups are then obtained as the extension in time of existing
spatial segments. This category includes motion segmentation based on similarity of instantaneous
motion [1] [2] [3] [4] and motion model fitting [1] [5] [6], as well as color/texture segmentation and
region tracking [7] [8] [9].

On the other hand, trajectory grouping first considers temporal grouping, tracking discrete
features to extract their trajectories. Then trajectories belonging to the same moving objects are
spatially grouped together using motion segmentation. This family may be divided into methods
using motion similarity [10] [11] [12], and methods using explicit motion model fitting [13] [14].
When a dense segmentation is needed, an optional densification step may be added, which fleshes
out discrete trajectory features with neighboring sets of pixels.

A more recent class of methods, joint spatial and temporal grouping, avoids favoring one dimen-
sion over the other and instead operates directly in the spatio-temporal volume. These methods
define the grouping criteria simultaneously in space and time, so that evidence for groupings is
gathered at the same time in both dimensions. They rely on pixel color and spatio-temporal
position [15], or also incorporate instantaneous motion [16] [17] [18].

This previous classification of approaches is represented in Figure 1. Spatio-temporal grouping
starts with unstructured features, such as image features (color, texture, motion field...), or dis-
crete features (interest points, edges. .. ). Segmentation with spatial priority first groups spatially,
then extends the segmentation temporally. Trajectory grouping tracks features temporally be-
fore grouping the resulting trajectories spatially. Finally, joint spatio-temporal grouping follows
a diagonal path and builds structures in both dimensions simultaneously.

Section 3 briefly describes the building blocks used by various grouping methods. Category-
specific descriptions are then developed in Section 4 (segmentation with spatial priority), Section 5
(trajectory grouping) and Section 6 (grouping jointly in space and time).

3 Building Blocks of the Grouping Process

Before examining each category in detail, it is of interest to compare the building blocks used by
various grouping methods. These are either individual image pixels [1] [5] [19] [20], spatial regions
resulting from a color or texture over-segmentation [21] [3] [2] [4], or discrete geometric features
such as interest points [22] [13] [23] [24] and edges [13].
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Figure 1: Structuration flows along temporal and spatial axes.

Pixel and region methods have the advantage of working directly on the original data, which
implicitly provides a topology for regularization, as well as color and texture features. Discrete
features have been mostly used in pure motion segmentation frameworks, where they provide an
explicit representation of displacements. Trajectory grouping is based on discrete features, since
these can be tracked over an extended time interval.

Region methods, in contrast to pixel methods, manipulate a smaller number of features, thus
reducing complexity. The extended spatial support also makes the initial estimation of motion
more accurate and robust. However, color and texture alone may not be sufficient to over-segment
expected object boundaries.

Note that some methods may consider different kinds of building blocks at different stages of
the process. For example, Wang and Adelson [1] first merge a priori regions based on motion
parameters in the initialization step, but they later come back to the pixel level when refining
motion and spatial supports of layers.

4 Segmentation with Spatial Priority

The first category gives priority to spatial segmentation of image features. Methods in this
category can be seen as an extension of single frame segmentation by adding temporal tracking.

We further divide these methods into methods using motion segmentation, and methods using
color/texture segmentation. Methods relying on motion are mostly sequential. They segment
frames one after the other based on instantaneous motion and segmentation in the previous
frame. Methods based on color/texture can also segment video frames individually, then merge
the regions temporally.

4.1 Sequential Motion Segmentation

Spatio-temporal segmentation based on instantaneous motion is a very broad family of methods
that we analyze with respect to the two steps it involves: the method used for framewise motion
segmentation, and how temporal coherence is enforced.
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4.1.1 Framewise Motion Segmentation

Whether the building blocks are pixels, regions, or discrete features, motion segmentation involves
two kinds of techniques: motion similarity techniques and model fitting techniques. We note that
both approaches rely on an underlying motion model, which may be either a spatial motion
smoothness model or a parametric (translational, affine, perspective) model. The distinction we
propose emphasizes how this model is applied to the video data.

e Motion similarity methods estimate motion parameters on a local basis, for each element
independently, or for each pair of elements. The grouping involves a symetrical comparison
between elements of the same nature, for example while clustering in motion parameter
space, or grouping pairs of similar elements.

e Motion model fitting methods compute motion parameters in groups of identically labeled
elements. They involve the evaluation of asymmetric measures of the quality of fit of an
element to a motion model.

Figure 2 represents in a schematic way a taxonomy of techniques used in segmentation with
spatial priority. Detailed explanations can be found in the corresponding paragraphs of this
section.

Framewise motion segmentation

Motion similarit Model fitting
Clustering in General One model Competition
vector space pairwise similarity at a time between models
Full parameter space [1] Pure motion [3] Dominant motion [27] [5] Multiple layers
Subspace [2] Color residual [26] [4] Cluster growing [22] [1] [5] [25] [19]

Figure 2: Taxonomy of grouping methods with spatial priority from the point of view of spatial
segmentation and temporal coherence.

Motion Similarity Segmentation

Motion Parameter Space The simplest measure of motion similarity is obtained by using
Euclidean distance in motion parameter space. To initialize their motion models, Wang and
Adelson [1] compute affine motion on a priori regions, then cluster them in parameter space
using this measure.

In the work of Ke and Kanade [2], the same clustering approach is considered, and is further
constrained by first projecting on a subspace of the full parameter space. The resulting dimen-
sionality reduction contributes to decreasing the disparity inside clusters. This reduction cannot
be dramatic, though, since it starts from a six-dimensional space. The authors suggest, as future
work, taking into account motion parameters computed on successive frames, so that the full pa-
rameter space has more dimensions. In that context they could more effectively take advantage of
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the claimed property that motion parameters of rigid objects lie in a three-dimensional subspace,
independently of the number of frames considered.
Affine motion with parameters (a0 Gzp Gzy Gyo Gy Gyy) leads to the motion vector (u, U)T at a
given position (z,y)":
U = Qg+ T gy +yaxy
VUV = Qo+ (1)
y0 T T Ayy + Y Ay

The six parameters can be separated into two sets with different homogeneities: two for zero-order
(translation: (a0 ay)) and four for first-order (rotation, zoom, shear: (ayy dzy Gys Gyy)). The
sensitivity of predicted motion vectors to a zero-order parameter is uniform, whereas its sensitivity
to a first-order parameter depends on spatial position, and is higher for positions far from the
origin. To make sure that all dimensions have roughly the same influence on the borders of the
image, Wang and Adelson [1] normalize the parameters by dividing the first-order parameters by
the size of the image.

Pairwise Contextual Similarities To avoid the problem of interpretation and normaliza-
tion of metrics in motion parameter space, other methods avoid comparing motion parameters
directly, but rather come back to the spatial domain, where motion similarity can be expressed
in terms of physical values: motion vector discrepancy [3], or error of motion-compensated pixel
values [26] [4].

Gelgon and Bouthemy [3] compute affine motion parameters for each individual region. For
a pair of neighboring regions, they compare the motion fields predicted by the two parametric
models on the union of the regions. This motion similarity reflects how well the motion associated
with each region predicts the motion on the other. They incorporate these motion similarities in
a Markov Random Field (MRF) segmentation framework.

Such a cross-validation of motion models is also used for the merging of spatial regions by
Moscheni et al. [26]. They base the similarity on the residuals of motion-compensated pixel
values between successive frames. This criterion is combined with a contrast criterion, to favor
grouping of regions of same luminance. They use the same framework to link regions temporally,
by defining a similarity based on invariance.

Residuals are used in the region merging step of Wang [4]; he associates with every pair of
adjacent regions the motion model computed on their union. He merges the two regions if the
compensation error on pixel values is below a given threshold.

Model Fitting Model fitting methods are based on the notion of quality of fit of each element
to the model. These methods seek to find the model parameters that will optimize the overall
quality of fitting.

Top-down approaches consider a reference motion model, and classify features into inliers and
outliers. The inliers are usually associated with the background, while the outliers correspond to
the foreground objects. The reference motion, which usually corresponds to the motion of the
dominant object, is estimated using robust methods, which are less sensitive to other motions and
can be applied to the common occurrence of a background that has a parametric motion and is
the dominant object [5]. Several objects can be extracted by recursively applying this method to
remaining outliers [27].



Growing clusters in a bottom-up manner, Smith and Brady [22] group motion vectors associated
with interest points. Points are added one by one to existing clusters, by testing if their motion
vectors are close enough to the vector predicted at the same point by the affine motion model of
the cluster.

Approaches related to a layered representation [1] [5] [25] take into account several models that
compete with each other. This can be expressed in a probabilistic framework by mizture models:
each feature (pixel or region) is associated with one motion model; the parameters of the models
are unknown.

Joint estimation of both motion parameters and labels is very complex and prone to being
trapped in local minima, because of its very high dimensionality (labeling has one variable per
element). This problem is generally solved using the Expectation-Maximization (EM) frame-
work, which estimates one of the unknowns, while keeping the others constant, and iterates until
convergence.

Most work of this type associate an affine parametric model with each layer [5] [1]. In [19] only
motion smoothness inside each layer is enforced.

4.1.2 Spatial Segmentation using Color/Texture

Some methods base the segmentation on visual features such as color or texture. This is seen
either as a way of finding a spatio-temporal representation based on space-time tubes of consistent
color/texture, or as a preprocessing step before motion segmentation.

With noisy data, or in the presence of non-rigid objects, motion fields may be unreliable or
non-parametric. In such cases, it is possible to rely entirely on color or texture, and then group
segmented spatial regions temporally. Deng and Manjunath [7] use this approach (see below for
details); Wang [4] and Gomila [28] use morphological color segmentation; Del Bimbo et al. [29]
find clusters in color feature space.

This approach usually attempts to over-segment objects in each frame, and then to match
the pieces from frame to frame; this works better for objects that have parts with uniform
color/texture, and high contrast with other objects.

In Deng and Manjunath’s work, [7], seeds derived from a segmentation of the previous frame are
projected to the current frame assuming slow motion, and grouped with those segmented regions
of the current frame that overlap them. Del Bimbo et al. [29] compute similarities between regions
in two successive frames based on color invariance, and spatial overlapping. They connect each
region to the best match in the next frame, unless similarity is under a threshold.

Faster motions can be handled by considering the overlap of motion-compensated regions, as
in the work of Wang [4]. In case of conflict, he favors the temporal grouping between pairs of
regions that have the smallest difference in pixel values.

In [8], the matching is not computed on successive frames, but between successive groups of
frames.

4.1.3 Temporal Coherence

Temporal grouping is an important step of spatio-temporal segmentation which deserves futher
comparative discussion. The result should enforce identical labels for the same object across
frames.



Most of the techniques based on spatial motion segmentation handle frames sequentially. They
project the segmentation computed in one frame onto the next, and take it into account while
segmenting the new frame. This is justified by the causal relationship between frames, and is
attractive because frames can then be treated in the order in which they are decoded or acquired.
On the other hand, this doesn’t use all available information; indeed, only framewise motion
information is available at the beginning of the sequence, and most of the time, information
accumulated over a sequence is reduced to the spatial segmentation of the previous frame.

Temporal coherence can be enforced by two kinds of techniques: initialization from the previous
frame and explicit temporal constraints.

Initialization from the previous frame is used in iterative methods, where the final solution
is found by successive changes to an initial labeling. The segmentation in the current frame is
initialized according to a prediction computed by projecting the previous segmentation [1] [5] [21]
[3] [4] [22]. The iterations then converge to a local optimum, given the high dimensionality of the
solution space, which lies in a valley dependent on the initialization. During the optimization,
the final result may drift away from the initialization during the iterative optimization [9](p112).
This problem arises mainly in the presence of segmentation ambiguities, where the optimum may
vary from one frame to the other; for example, when a moving object is almost still, the motion
boundaries may be difficult to extract accurately in a single frame.

To enforce stronger temporal contraints, some methods combine the framewise segmentation
criterion with an additional term, which explicitly models the temporal coherence of labelings.
When segmentation is ambiguous at the single-frame level, temporal constraints ensure a better
coherence. This coherence can be expressed as the invariance of the labels with respect to the
projection from the previous frame [30] [21], or as the fitting with a location model that depends
on several previous frames [31].

Patras et al. [21] use a MRF framework in which the Gibbs potential of a single site (region)
takes into account the number of pixels for which this region has the same label as the motion-
compensated projection of the labels from the previous frame.

The condition of temporal order is relaxed by Jojic and Frey [25]. They use a mixture model
with four types of hidden variables: the appearance model of each class (called a sprite) and
its variance, the actual appearances of each sprite in each frame of the sequence, the spatial
transformations that map these appearances onto each frame, and finally the masks that tell
which pixels of the sprites are seen in each frame.

More restrictive and longer-term constraints are introduced by Sawhney and Kumar [31]. They
impose temporal constraints that penalize changes in motion and in segmentation shape over
several successive frames.

5 Trajectory Grouping

Methods with spatial priority in the motion segmentation category described above rely only on
short-term motion information (usually between two frames). To take into account long-term
information, another class of methods has been developed using trajectories that can represent
the motions of points in a long temporal interval. In this case, less ambiguous displacement
differences can be observed, and motions are better discriminated.

The estimation of trajectories is performed as a preliminary step, using feature point temporal
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matching [32], or textured patch tracking [33]. A drawback of this approach is that since the spatial
motion segmentation takes place afterward, tracking cannot use any a priori spatial constraints,
such as parametric motion or group tracking, which would improve quality and efficiency. For
this reason, this approach is best suited to applications where tracking can be performed reliably
enough to produce trajectories almost free of noise. This is the case in sequences with slow motion,
and when there are enough discriminating features on the objects of interest.

The next sections describe the main trajectory grouping techniques, which are summarized in

figure 3.
Trajectory groupin\
Motion similarity‘/ Model fitting
Clustering in General One model Competition
vector space pairwise similarity at a time between models
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lengths [11]

Figure 3: Taxonomy of trajectory grouping methods.

5.1 Grouping by Motion Similarity
5.1.1 Direct Comparison of Trajectories

Methods based on direct comparision of trajectories define a similarity between two trajectories
which is not influenced by the other trajectories. It can consist in representing each trajectory as
a point in a multidimensionnal vector space and then use Euclidean distances as in [10] , or define
a more general pairwise motion similarity as in [11] and [34].

Allmen and Dyer [10] compute trajectories, which they call spatio-temporal flow curves, by
integrating local motion flow over time. Given a fixed-width temporal interval, they represent the
trajectories by their curvature and slope values in that interval. They cluster those features using a
K-means algorithm, which groups together trajectories having similar curvatures and slopes. The
analysis of the merging and splitting of clusters as the time interval is shifted gives information
about occlusion events.

Megret and Jolion [11] propose a hierarchical clustering framework that allows them to use
tracks of different lengths. Track similarity is based on the invariance of relative position in
several frames. Hierarchical agglomerative clustering is then used to produce a clustering tree
that groups together similar long-term motions.

Mills and Novins [34] consider 3D spatial feature points. They create a feature interval graph
that associates with each pair of feature points in the scene an interval that represents the possible
values of their 3D distance. The intersection of the intervals obtained from two tracked features
points at different times then reveals whether they belong to the same rigid object.



5.1.2 Subspace Factorization

Subspace methods represent a trajectory as the vector of the coordinates of its feature points over
time, and stack them in a matrix C'. With an affine camera, the tracks associated with differently
moving rigid bodies moving differently lie in separate subspaces. The core of the method is to
reduce C' to a form that enhances these subspaces.

Costeira and Kanade [23] and Gear [24] factorize the matrix C' using singular value decompo-
sition (SVD): C = UXV™, where U and V are orthonormal matrices, and ¥ is diagonal. This
decomposition is then truncated to the rank k of C, by keeping only highest singular values:
C, = UpSiVit. This results in a shape interaction matrix Q = V;V, ", which has the following
property: the interaction coefficient ();; is zero if trajectories ¢ and j belong to separate rigid
objects, and is nonzero otherwise.

The final segmentation is computed by clustering the points representing trajectories, based
on the values in the matrix . Such a clustering can also be seen as block diagonalization
of . Costeira and Kanade [23] use a greedy algorithm, which recursively merges groups of
trajectories having high interactions. This matrix is also used by Ichimura [35], who uses a
recursive subdivisivion approach guided by discriminant analysis.

An interesting interpretation of methods based on the matrix ¢ was proposed by Weiss [6],
who shows that they amount to an eigen-clustering using an affinity matrix W produced by the
inner product of trajectory coordinates:

Wi; = thixtj + Ytilt; (2)
¢

In order to decrease the influence of noise, Kanatani [12] and Zhang et al. [36] fit subspaces
to groups of points, instead of relying only on pairwise affinity. Kanatani [12] uses a merging
approach where points that belong to a group are projected onto a subspace fitted to the group.
The merging decision also takes into account model selection. Zhang et al. [36] use @) as a
preprocessing step to produce an over-segmentation, then estimates group distances D between
these segments. Final object segmentation is produced by thresholding on D.

In real data, trajectories may have missing points in some frames, which precludes the direct use
of SVD. Tomasi and Kanade [37] apply SVD only to fully defined vectors. Jacobs [38] and Shum
et al. [39] take into account all available data, by fitting a low-rank matrix to the incomplete data
matrix. The fitting may be an iterative weighted least-square method [39], or a direct method
based on constraints derived from a set of fully defined submatrices [38].

5.2 Grouping using Explicit Parametric Models
5.2.1 Hypothesize and Test

Hypothesize and test methods work as follows: hypotheses are obtained by fitting models to small
data point sets chosen randomly. Each hypothesis is then validated by assessing the quality of fit.
In RANSAC based methods, this is achieved by counting the number of inlier points. Hypotheses
that have enough inliers are kept, and possibly compared to each other in order to merge similar
ones.

This method copes well with outliers. Indeed, by choosing small sets of points, one increases
the possibility of considering only points of the same model, thus computing a correct parameter
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vector. This is not the case when all the data is used simultaneously, since outliers are then
included in the estimate. The threshold must be fixed in advance to decide how many points
are actually inliers. Setting it requires some preknowledge about the expected error around the
model.

Baldi et al. [14] apply an affine motion model to cluster trajectories for mosaicking. They use
a variant where point sets are not chosen randomly, but deterministically by considering only
spatial neighborhoods. Torr and Zisserman [13] refer to such sets as propinquintal sets. Choosing
only sets of neighboring points increases the chance of picking points in the same object. This
avoids, for example, incorrectly assigning a single rotational model to two translating groups of
features [14].

5.2.2 Motion Mixture Models

Torr and Zisserman [13] adopt a mixture model formulation, which associates each trajectory
with an object model; each object model consists of a parametric motion model, which describes
the displacement of each point in the image over the whole sequence. Estimation of labels of
trajectories (linking each trajectory to an object model) and motion parameter estimation are
performed using an EM approach. The initialization comes from RANSAC. Although examples
on only three frames are provided, the formulation allows for the use of longer trajectories, as
long as they are defined on the same temporal interval.

6 Joint Spatial and Temporal Segmentation

In contrast to other methods, which give priority to spatial or temporal grouping, joint spatial and
temporal segmentation methods consider a video as a spatio-temporal block of pixels, by treating
the spatial and temporal dimensions simultaneously. The merit of this approach is supported
by Gepshtein and Kubovy [40], who suggest that human vision finds salient structures jointly in
space and time.

Figure 4 summarizes the different approaches used for joint spatial and temporal grouping
techniques. We detail them in the following subsections. First we explore grouping in a vector
space, either using similarity clustering [16], or fitting of a mixture-model [15]. In a second
subsection, we present methods based on graph cut [17] [18].

Joint spatial and temporal segmentation

Similarit Model fitting
Clustering in General Competition
vector space pairwise similarity between models
Clustering of motion/color Graph cut [17] [18] Mixture model of color [15]

features [16]

Figure 4: Taxonomy of joint spatial and temporal grouping methods.
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6.1 Clustering in Feature Space

Greenspan et al. [15] consider videos in a six-dimensional feature space: color, spatial and tem-
poral position. Each pixel is associated with a point in the feature space. Pixels are clustered
using a Gaussian mixture model, in an EM framework, where the number of clusters is fixed a
priori. The optimal number of clusters is found using MDL, which requires running the clustering
several time with different number of clusters. Once the model is learned, Gaussian covariance
coefficients between spatial and temporal dimensions give information about motion, which is
used for event detection. A hard labeling of pixels can be found by assigning each pixel to the
Gaussian distribution that best explains its value.

DeMenthon [16] precomputes an optical flow at each pixel, whose spatio-temporal orientation
and position are respectively represented by two motion angles and two motion distances that are
invariant to the motion shifts of the pixel. The seven-dimensional feature vectors composed of
three color and four motion descriptors have the property that pixels having a similar color and
belonging to a linearly moving moving patch are close to each other in feature space. They are
clustered using a hierarchical method derived from mean shift.

6.2 Graph-Based Segmentation

These grouping techniques are the extension to the spatio-temporal volume of graph-based image
segmentation [41, 42, 6]. Graph-based methods consider a graph whose nodes are the image
features (pixels taken from the whole video volume), and whose edges are weighted according
to some measure of similarity between nodes (also called affinity in this context). The nodes
are grouped using graph cut techniques. The edges connect pixels in spatial as well as temporal
directions, thus yielding a joint spatial and temporal segmentation.

Shi and Malik [17] use a similarity based on motion profiles. A motion profile represents the
probability distribution of the motion vector at a given point.

Fowlkes et al. [18] use a similarity based on several visual cues. They attach to each pixel i
of the sequence a feature vector x; containing its spatio-temporal location (z,y,t), its color in
(L, a,b) space, and optical flow (u,v). The affinity between pixels ¢ and j is defined as

Wy = exp {—5 06 =)™ (- x)} 3)

where Y gives the weights of the dimensions. They also use the Nystrom approximation of the
normalized cut algorithm to compute segmentations more efficiently. This method approximates
the similarity matrix by sampling the input features and expressing all pairwise similarities with
respect to those samples. The resulting speedup is necessary because of the large number of pixels
in the video stack and the complexity of eigenvalue analysis.

7 Concluding Remarks

In this paper, we have surveyed methods of spatio-temporal grouping in videos. The grouping
involves building blocks that can be pixels, regions resulting from oversegmentation, or discrete
features. These blocks are grouped based on similar motion, or similar color/texture. We propose
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a classification which has three categories: (1) segmentation with spatial priority, (2) segmentation
by trajectory grouping, and (3) joint spatial and temporal segmentation.

Inside each category, we also make a distinction between methods based on pairwise similarities,
which lead to simple grouping criteria and can give global optima, and model fitting methods,
which can represent more complex criteria, at the expense of iterative computation, and additional
a priori knowledge.

This study has been limited to techniques which tackle the problem of object extraction in
monocular videos for low-level features. We didn’t address object detection methods devoted to
special applications, for which more information on objects is available, because of specialized
knowledge on the nature of the objects or tracking initialization. In particular, readers may refer
to methods developped for tracking individual objects [43] or for the detection and the recognition
of humans activities [44].
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