
Representation and Recognition of Events in Surveillance Video Using Petri Nets

Nagia Ghanem, Daniel DeMenthon, David Doermann and Larry Davis
Department of Computer Science

University of Maryland
College Park, Maryland 20742

{ghanem, daniel, doermann, lsd}@umicas.umd.edu

Abstract

Detection of events is an essential task in surveillance ap-
plications. This task requires finding a general event repre-
sentation method and developing efficient recognition algo-
rithms dealing with this representation. In this paper, we de-
scribe an interactive system for querying surveillance video
about events. The queries may not be known in advance
and have to be composed from primitive events and previ-
ously defined queries. We propose using Petri nets as both
representation and recognition methods. The Petri net rep-
resentation for users’ queries is derived automatically from
simpler event nets. Recognition is then performed by tokens
moving through the Petri nets.

1. Introduction
As amounts of available video data grow, developing in-
teractive systems for efficiently querying this data about
specific events has become a significant need. These sys-
tems are of great interest in many applications, especially
in surveillance for physical security, where large amounts of
data gathered from different surveillance cameras are avail-
able daily.

Such a system should be able to bridge the gap between
the high-level semantics of the users’ queries and uncertain
and imprecise data computed by lower level vision modules.

This can be achieved by providing the user with a pow-
erful user interface for submitting queries, providing a map-
ping from the query into a set of filters that can utilize the
numerical data provided by lower-level vision modules to
infer high-level semantics, and then displaying the results
in such a way the user can reformulate the query and use
the search results to foster new search inputs.

The problem of inferring high-level semantics has been
addressed by many systems in recent years [8, 10, 18, 22].
Both deterministic and stochastic inferences have been sug-
gested. For simple activities whose structure is known
in advance and can be easily learned from training data,
stochastic inference can be used. On the other hand, for
higher level events that include temporal combinations of

other events, deterministic inference seems preferable.
This paper describes an interactive system for query-

ing surveillance video about events. The system provides
a graphical user interface where the user can formulate
queries. Our approach automatically maps each of these
queries into a set of Petri nets that represent the compo-
nents of the query. Lower-level video processing modules
(background subtraction, tracking, etc.) are used to detect
the occurrence of primitive events. These primitive events
are then filtered by Petri nets to recognize composite events
of interest.

Petri nets have previously been used for event recogni-
tion by Castel et al. [4]. Our approach extends this work by
the following:

• The precise use of the state of the art ontology in video
surveillance. We define automatic mappings of ontol-
ogy entities into Petri nets.

• Representing each event instant by a token, not a com-
plete net. For each new event instance, [4] creates a
new Petri net. So, the total number of existing nets is
the number of instances of all events. In our approach,
all instances of the same event are represented by one
Petri nets and event instances are represented by to-
kens in the corresponding Petri net. So, at any time,
the total number of existing nets is small and fixed,
corresponding to the number of events.

A Petri net is an abstract model of the flow of information
in a system [17]. Using Petri nets as a representation and as
a filtering mechanism has the following advantages:

• Petri nets can be used for both deterministic and
stochastic inference of event occurrences.

• Petri nets have a nice graphical representation that uses
only a few types of elements. This representation has a
well-defined semantics so that it is easy to understand
the model and to learn the language.

• Petri nets have a precise mathematical model that can
be used for analysis. For example, there are well-

1

defined algorithms for detecting deadlock and incon-
sistency in the data.

• Petri nets can be used to represent sequentiality, con-
currency and synchronization of events.

• Petri nets can be used to represent events in a top-down
fashion at various levels of abstraction, i.e. they can be
used to model a composite event hierarchically from
simpler event models.

• Compared to classical rule-based expert systems, in
terms of efficiency, Petri nets are shown to be as ef-
ficient as expert systems. The RETE algorithm, used
in most expert systems implementations to improve
speed [7], is applicable to Petri nets [2]. The main idea
is to exploit temporal data redundancies (coming from
the markings that are not changed during transition fir-
ing).

• At any time during the interpretation process, the po-
sitions of tokens in the Petri net summarize what hap-
pened in the past (keep history) and predict what will
happen in the future. In this way, composite events
are recognized incrementally and there is no need to
reevaluate past events.

The rest of this paper is structured as follows. Section 2
summarizes previous work in the area of event recognition.
In Section 3, the basic concepts of Petri nets are given.
Section 4 presents the system architecture. In Section 5, an
ontology for event representation is described. In Section
6 the mapping between ontology entities and their Petri net
representations is explained. In Section 7, we provide in-
formation about the implemented system and experimental
results. Section 8 concludes the paper and presents ideas for
future work.

2. Related Work
Recognition of events from video data can be seen as an
inference problem, where some inference mechanism is ap-
plied to available knowledge to infer the occurrence of these
events in the video data. In this section, a survey of deter-
ministic methods for event recognition is given. Then we
discuss how Petri nets are used as an inference mechanism
in rule-based expert systems.

There have been many methods that apply deterministic
inference to detect events in video data. Most of these meth-
ods assume that events can be decomposed into subevents,
some of which can be directly detected by perceptual meth-
ods, accounting for a variety of temporal constraints. Then
constraint propagation algorithms can be used.

In Past-Now-Future networks (PNF-networks) [18],
Allen’s temporal relationships [1] are used to express paral-
lelism and mutual exclusion between different subevents.

Then, Allen’s interval algebra network is mapped into a
simpler three-valued PNF-network, to allow fast detection
of actions and subactions. The arc consistency algorithm
AC-2 is used to propagate the temporal constraints. This
algorithm is linear in the number of constraints. But the
computation of PNF restriction is NP-hard.

Declarative models [20] are used to describe all the ac-
tivities (states of the scene, events and scenarios). The ac-
tivities are described by the conditions between the objects
of the scene. Then a classical constraint satisfaction algo-
rithm called Arc consistency-4 or AC-4, is used to reduce
the processing time for recognizing activities in video se-
quences.

To increase the efficiency of processing temporal con-
straints, Vu et al. [22] suggest that in a preprocessing step,
scenario models can be decomposed into simpler scenario
models containing at most two sub-scenarios. Then, the
recognition of these simpler scenarios just tries to link two
scenario instances instead of trying to link together a whole
set of combinations of scenario models. The method looks
for an order on the ending times to have a unique decom-
position. For loosely coupled events, the method leads to
several decompositions which is more expensive for recog-
nition.

Petri nets have been suggested by Castel et al. [4] as
an inference mechanism to represent the evolution of a car-
parking scene with human and vehicles. A symbolic lan-
guage is defined to capture the logical and algebraic condi-
tions that are handled in a set of prototypes. An Activity
prototype is a set of logical and algebraic relations holding
for a finite set of objects and scene elements. A Plan proto-
type is a set of relations between some Activity prototypes
and some state conditions. The Plan prototype is interpreted
as a Petri net. Places are associated with Activity prototypes
and state conditions. Transitions are associated with logical
conditions and constraints.

Stochastic inference methods have also been applied
successfully to event recognition from video data. Ex-
amples include Hidden Markov models [16, 21], stochas-
tic context free grammars [11] and Bayesian networks
[3, 8, 10, 13, 19].

Petri nets have been used as an inference mechanism for
rule-based expert systems. In 1987, Sahaoui et al. showed
the similarities between a rule-based expert system and a
Petri net: transitions can represent rules, markings can rep-
resent facts and the token player can represent the inference
engine. They also showed that using a Petri net represen-
tation increases the efficiency of rule-based expert systems
by providing parallelism and pipelining. Since then, many
expert systems were developed using Petri nets as a knowl-
edge representation that guides the inference process. Ex-
amples include work done by Murata and Zhang [15], Hura
[9], Li [12] and by Murata and Yim [14].

2

Before Firing
 After Firing

Figure 1: Simple Petri Net Before and After Firing

3. Petri Net Basics
A Marked Petri net is a quintuple(P ; T ; I;O;M), where:

• P ={p1; p2; ...} is the set ofnp places (drawn as circles
in the graphical representation);

• T = {t1; t2;} is the set ofnt transitions (drawn as
bars);

• I is the transition input relation and is represented by
means of arcs directed from places to transitions;

• O is the transition output relation and is represented by
means of arcs directed from transitions to places;

• M = {m1;m2;} is the marking. The generic entry
mi is the number of tokens (drawn as black dots) in
placepi in marking M.

The graphical structure of a Petri net is a bipartite di-
rected graph: the nodes belong to two different classes
(places and transitions) and the edges (arcs) are allowed to
connect only nodes of different classes.

The dynamics of a Petri net is obtained by moving the
tokens in the places by means of the following execution
rules:

• A transition is enabled in a marking M if all its input
places carry at least one token;

• an enabled transition fires by removing one token per
arc from each input place and adding one token per arc
to each output place.

Figure 1 shows a Petri net with one transition. The
transition has two input places and two output places. It
is shown before and after the firing. Firing the transition re-
moves one token from every input place and inserts a token
in every output place.

For more information about Petri nets basics, readers can
refer to [17].

4. System Overview
Figure 2 shows the architecture of our system. From a
graphical user interface, the user can submit queries about

Figure 2: System Overview

people and object activities and about events. The Petri net
for the final query is inferred from the Petri nets of query
components. The input video is preprocessed by applying
background subtraction and tracking modules to extract ob-
ject tracks over time. Object tracks are analyzed to detect
primitive events that are parts of the final query. The de-
tected primitive events represent inputs to Petri net-based
recognition modules, whose function is to detect the occur-
rence of the final query in the input video.

5. Ontology for Event Recognition
In this section, an ontology for event recognition is de-
scribed. It is assumed that there is an intermediate vision
layer that provides a geometric scene description.

5.1 Objects

Tracked objects are assumed to be provided by an interme-
diate vision layer. The following properties may also be
provided:

• Class: Mobile/Contextual

• Attributes: Color, Position, Orientation

• Type: Person/Car/Door/Zone-of-interest...

• Identifier.

5.2 States

A state is defined as a conceptual entity with one or more
object for which a qualitative predicate is true over a time
interval. Examples are:

• One-object states: Moving/Still.

• Two-object states: Far from/Near, Inside/Outside.

3

5.3 Events

We define two types of events, primitive events and com-
posite evetns.

Primitive Events

A primitive event is an event that can be inferred from prop-
erties of objects and short term trajectories. Examples are:

• One-object events: Move/Stop, Acceler-
ate/Deccelerate.

• Two-object events: Approach/Leave, Pickup/Putdown,
Enter Area/Exit Area, Open/Close.

Composite Events

A composite event, or a scenario, is composed of states and
simpler events connected by spatial, temporal or logical re-
lations. Examples of composite events are:

• Sequences: A sequence is a succession of two or more
events.

• Repetitions: Detecting more than one occurrence of
the same event may have a special meaning in its con-
text. For example, the different occurrences of the
event may be performed by different mobile objects
with respect to the same contextual object.

• Negative Events: The negative event(X, Y, t) is de-
tected ifX does not happen withint time units from
the occurrence ofY .

5.4 Relations

Logical Relations

Logical Relations (e.g. AND, OR, NOT) are used in their
usual meaning to express different compositions of events.

Temporal Relations

A binary temporal relation is a relation between two events.
Since an event is represented by an interval or by one point
in time, Point-interval temporal logic [23], which is an ex-
tension to Allen’s interval logic [1], is used to handle differ-
ent possibilities, which are

• both events are intervals

• both events are points

• one event is an interval and the other is a point.

Spatial Relations

A binary spatial relation is a relation between two spatial
entities. These entities may be points, lines or regions. A
spatial relation can be a topological, directional or distance
relation [5]. Topological and directional relations are qual-
itative relations while a distance relation is a quantitative
measure between two objects. A primitive spatial relation
is a combination of a topology and a direction.

6. Petri Nets Representations
The basic concepts of Petri nets have been explained in Sec-
tion 3. Some extension to ordinary Petri nets concepts are
given in Section 6.1. The representation of events and rela-
tions in terms of Petri nets elements is explained in Sections
6.2 and 6.3.

6.1 Petri Nets Extensions

Using ordinary Petri nets to represent large complex sys-
tems is known to have the problem of unmanageable sizes.
High Level Petri Nets (HLPN) are Petri nets with exten-
sions to handle this problem. Examples for HLPN include
using hierarchical structures that provide compact represen-
tation while preserving other properties, using token colors
to represent different class types and others. To be able to
use Petri nets in our system, we propose the following ex-
tensions:

• Transitions:

– Conditional Transitions: A conditional transi-
tion may have additional firing conditions that
should be satisfied for the transition to fire. In
other words, the transition fires only when every
input place has the required tokens and the as-
sociated conditions are satisfied. A conditional
transition is represented by a thin bar.

– Hierarchical Transitions: A previously defined
Petri net can be used as a building block for con-
structing new nets. Instead of being redrawn ev-
erytime it is reused, it can be represented by a
hierarchical transition. This also simplifies the
graphical representation. A hierarchical transi-
tion is represented by a unfilled rectangle that
abstracts the detailed structure of the net. It is
assumed that a hierarchical transition has only
one immediate input transition (start transition)
and one immediate output transition (end tran-
sition). If this hierarchical transition is used in
constructing other nets, these immediate transi-
tions are used to connect this transitions to other
nets.

4

p1 p2
p1 p2

p3 p4

SX

EX

p3 p4

X
X

Conditional

Transition

Hierarchical

Transition

(a)

(b)

Figure 3: Graphical Notations for Different Types of Tran-
sitions

Figure 3.a shows the graphical representations of dif-
ferent transition types and Figure 3.b shows a hier-
archical transition X represented by its start and end
transitions SX and EX. Transition SX has the same in-
puts as X while EX has the same output as X.

• Tokens: Tokens can have labels (colors in Petri net ter-
monology) that represent different actors and can also
hold information about these actors.

6.2. Representation of Events

An event is represented by a transition. The type of the
transition depends on the event type, as follows:

Primitive Events

A primitive event is represented by a conditional transition,
where the condition associated with the transition is the de-
tection of this primitive event.

Composite Events

A composite event, or a scenario, is represented by a hierar-
chical transition, whose structure is derived from the event
structure. Since a composite event is constructed incremen-
tally from simpler events using logical, temporal and spatial
relations, the Petri net representation for this event is con-
structed in the same way: the Petri nets representing simpler
events are connected by appropriate elements to express dif-
ferent relations. Examples are given in the next section.

BA

A AND B

BA

A OR B

A

NOT A

Figure 4: Logical Relations

6.3. Representation of Relations
Logical Relations

Figure 4 shows Petri nets representing the logical relation
AND, OR and NOT. The operands are assumed to be tran-
sitions representing events.

The AND is represented by a transition whose input
places are the output places of its operands. The transition
will fire only if every input place has one token.

The OR is represented by a place whose input transitions
are the operands. Any of these transitions can place a token
in the place representing the result.

The NOT is represented by a transition whose input place
is an output place of its unary operand(transition). But the
arc connecting the place and the output transition is in-
hibitor, which means that the transition will fire if the input
place does not have tokens.

Temporal Relations

As in logical relations, the operands are assumed to be tran-
sitions representing events. Combining two events by a
temporal relation can be represented by connecting their
endpoints in a sequence that represents this relation. Fig-
ure 5 shows the Petri net representation of Allen’s tempo-
ral interval-interval relations, where the letter “S” before the
event name refers to the startpoint of the event and the letter
“E” refers to the endpoint of the event. Point-interval and
point-point relations can be represented in the same manner
and are not shown here.

Spatial Relations

Checking whether a spatial relation between two objects
holds can be done by adding a condition to a transition.

7. System Implementation and Results
In this section, we give an overview of our system and de-
scribe how to automatically generate Petri nets correspond-
ing to users queries. Then details about how Petri nets are
using the output of lower vision modules to detect events
are given.

5

A

BA beforeB

B
A meetB

B
A startB

B
Aend B

B
A overlapB

A duringB
B

A equalB
B

A

SB

EB

A

B

SB

SA

EA

EB

SA

EA, SB

EB

A before B A meet B A overlaps B A during B

EA

SA, SB

EB

SA

SB

EA,EB

SA,SB

EA,EB

A end BA starts B A equal B

Figure 5: Temporal Relations

The system is implemented in Java for multi-platform
portability. In our experiments, we used a static surveillance
camera overlooking a parking lot. Video frames represent-
ing this view are displayed to the user. The user can mark
areas of interest, add actors (cars and persons), assign prim-
itive events to actors, and describe different logical, spatial
and temporal relations between events. Actors represent the
variables that have to be instantiated during the event recog-
nition process, so we are using both terms (actors and vari-
ables) interchangeably.

Currently, we have a library of eight primitive events,
which are: “Appears, Disappears, Moves, Stops, Enters-car,
Exits-car, Enters-area, Exits-area”. The first four primitives
should be assigned one variable representing an actor (car or
person), “Enters-car” and “Exits-car”require two variables
(a car and a person). “Enters-area” and “Exits-area” also
requires two variables (a car or a person and an area). Once
a primitive is assigned to an actor, a transition is created,
whose name is the concatenation of the primitive name and
the actor name. For example, transitionStops−C0 refers
to the primitive event “Car C0 Stops”. Composite events
are described in terms of primitive events and previously-
defined composite events using different relation types. For
each event, there is a list of associated actors. For a com-
posite event, this list is the union of lists associated with its
subevents.

As mentioned in Section 6, the Petri net representation
of a primitive event is a net consisting of one conditional
transition. The construction of Petri nets corresponding to
a composite event is performed by combining the Petri nets
of its subevents by temporal and logical relations in a hi-

• Count cars that park in region A0, during the video

clip

• Objects: Car C0, Region A0.

• Subevents:

– E1 – Car C0 appears

– E2 – Car C0 enters region A0

– E3 – Car C0 stops

– E4 – Car C0 leaves region A0

• Temporal Relations:

– (((E1 Before E2) Before E3) Before E4)

E1

E2

E3

E4

P1

P3

P2

P4

Figure 6: Petri Net Representation for Counting Cars

erarchal structure. This may include adding dummy places
and transitions as connectors in the resulting net. Whenever
a new subevent is added to the current event, the actor list of
the event is appended by the actors of this subevent, if they
are not already there.

Before discussing the recognition process, we give two
examples to illustrate the construction of Petri nets.

Example 1

Assume we have a parking area and we want to count the
number of cars that used this area during a given period of
time. One way is to construct a simple Petri net that com-
bines the primitive events “Car C0 appears, Car C0 enters
parking area, Car C0 stops,Car C0 leaves parking area” in
a sequential order. In Figure 6, the Petri net correspond-
ing to this sequential order is shown. In this event, we have
only one actor, C0, that represents the car that goes through
this sequential order. This variable may be assigned many
labels during the recognition process, as discussed below.
Whenever a car appears, a new token is inserted in the first
place, P1. Whenever a car enters the parking area, its token
is moved from P1 to P2, and so on. At the end of the detec-
tion, the number of tokens in the place P4 is the number of
cars that stopped in the parking area and then left, and the
number of tokens in P3 are the number of cars that stopped
in the parking area and have not left yet.

Example 2

Another event, isCar−Exchange−Event. In this event,
there should be two car variables C0, C1 enter the park-
ing and park. Then a person P0 leaves one car and enters
the second car. After that, the second car should leave.
The Petri net for this event is shown in Figure 7. Note
that events E3 and E4 are primitive events (represented by
thin bars) while the rest are composite events (represented
by unfilled rectangle). In this event, we are not interested

6

E2

E3

E1

E4

E5

• Event: Person P0 moves from Car C0 to Car C1.

• Objects: Person P0, Car C0, Car C1.

• Events:

– E1 – Car Co parks

– E2 – Car C1 parks

– E3 – Person P0 exits Car C0

– E4 – Person P0 Enters Car C1

– E5 – Car C1 Leaves

• Relations:

(((E1 Before E3) Ends_before (E2 Before E4)) Before E5)

P1

P2

P3

P4

P5

Figure 7: Petri Net Representation for Car Exchange Event

which car arrives first, so there is no relation between E1
and E2. Whenever a car arrives in the parking area and
parks, a token is placed in both places P1 and P2. A token
in P1 will not be moved to P3 until a person exits the car
represented by this token. Now, a token in P3 represents
the combination of this person and this car, and hence con-
tains two colors. In the same way, tokens from P2 and P3
are not matched until the primitive event “leaves-car” is de-
tected with person matching the person in P2’s token and a
car matching the car in P1’s token. A new token is created
(now representing the two cars and the person) and inserted
in P4. The task of matching labels(generated by tracking
module) to variables (actors) is discussed later in this sec-
tion.

Once Petri nets for the query are generated, the user se-
lects the video clips onto which the query should run. In
the current version, we are using the background subtrac-
tion and tracking algorithms developed by Elgammal [6] to
provide object tracks over time. For each frame, the tracked
objects are listed with their IDs, types and bounding boxes.
Since we are assuming perfect track, we have modified the
tracking results by hand to get object tracks. A module has
been written to detect, for each frame, the occurrence of any
primitive event. These primitive events are the input for the
Petri net detection module whose function is to recognize
composite events in video data. Figure 8 shows one frame
after each step of the process of detecting primitive events.

The use of Petri nets for event recognition is justified by
two important advantages: (1) they reduce the number of
checked events whenever a primitive event is detected and
(2) they facilitate the process of binding labels (generated
by the tracking module) to variables (actors). In the follow-
ing, we will give details about each of these tasks.

For each composite event to be recognized, we keep a
list of enabled transitions. An enabled transition is a transi-

Figure 8: Detecting Primitive Events

tion where all its input places have tokens but the associated
event has not occurred yet. The Petri nets are reevaluated
only when a primitive event is detected. When this happens,
we need to check only the list of enabled transitions to test
if any of them is waiting for this primitive to fire. So, we
need not check all transitions in the net. When a transition
is enabled and the associated primitive is detected, the tran-
sition fires. Firing a transition removes tokens from input
places, inserts tokens in output places and updates the list
of enabled transitions. The fact that we check only the list
of enabled transitions provides an efficient implementation,
since usually the number of enabled transitions is small.

Assigning labels (generated by the tracking module) to
variables during the recognition process is done by assign-
ing each new detected object a color. In this way, a single
token in the Petri net may represent one or more actors, and
then have one or more colors. When a primitive event is
detected, its actors have to be matched with tokens from
input places. Also, these tokens have also to be matched
together to see whether there is a combination of actors that
satisfy the event so far. For a given transition to fire, every
possible combination of tokens is tested and a new token is
placed in the out place only if a match occurs. Although this
process seems tedious, the fact that only a small number of
these combinations will match reduces the expected num-
ber of times when this matching process is required. In this
way, the Petri net transitions act as filters to filter the large
amount of detected primitive events and keeps information
about the promising ones only.

8. Conclusions and Future Work
In this paper, we have shown how to use Petri nets for
event representation and recognition. We provide video an-
alyst with a powerful graphical user interface, where ad-hoc
queries about events can be easily formulated. The user de-

7

fine objects and primitive events, and then expresses com-
posite events using logical, temporal and spatial relations.
Then the Petri net representations of these queries are au-
tomatically generated. These Petri nets are provided with
primitive events detected from video streams and are used
as complex filters to recognize composite events.

Future work includes studying the effect of noise and
irrelevant observations on system performance. We are
also investigating how to reduce the number of matchings
performed during the recognition process. This can be
achieved by delaying the matching until the last subevent
is recognized and then going backwards through the net to
see if there are matching tokens (i.e. matching subevents
and actors). Also, we are interested in how to use the re-
sults of the recognition process to enhance the performance
of vision modules by providing information about where
and when more analysis is required. Another issue is how
to deal with uncertainty about identities in case of imperfect
tracking.

References

[1] J.F. Allen. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM, 26(11):832–
843, November 1983.

[2] D.D. Burdescu and M. Brezovan. High Level Petri
Nets and Rule Based Systems for Discrete Event Sys-
tem Modelling. International Journal of Smart Engi-
neering System Design, 3:81–97, 2001.

[3] H. Buxton and Shaogang Gong. Visual Surveillance
in a Dynamic and Uncertain World.Artificial Intelli-
gence, 78(1-2):431–459, 1995.

[4] C. Castel, L. Chaudron, and C. Tessier. What Is Go-
ing On? A High Level Interpretation of Sequences
of Images.4th European conference on computer vi-
sion, Workshop on conceptual descriptions from im-
ages, Cambridge UK, 1996.

[5] M. J. Egenhofer and J. Herring. Categorizing Binary
Topological Relationships Between Regions, Lines,
and Points in Geographic Databases.Technical Re-
port, Department of Surveying Engineering, Univer-
sity of Maine., 1991.

[6] A. Elgammal, R. Duraiswami, and L. S. Davis. Effi-
cient Computation of Kernel Density Estimation using
Fast Gauss Transform with Applications for Segmen-
tation and Tracking.Second International Workshop
on Statistical and Computational Theories of Vision,
Vancouver, Canada, 2001.

[7] C. L. Forgy. RETE: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem.Artifi-
cial Intelligence, 19:17–37, 1982.

[8] S. Hongeng and R. Nevatia. Multi-Agent Event
Recognition.ICCV, pages 84–93, 2001.

[9] G. S. Hura. Representation and Processing of Rule-
Based Expert System Using Petri Nets: A Viable
Framework . Proceedings of the 36th Midwest Sym-
posium on Circuits and Systems, 2:934 –937, 1993.

[10] S. S. Intille and A. F. Bobick. A Framework for Rec-
ognizing Multi-Agent Action from Visual Evidence.
AAAI/IAAI, pages 518–525, 1999.

[11] Y. A. Ivanov and A. F. Bobick. Recognition of Vi-
sual Activities and Interactions by Stochastic Parsing.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22:852–872, 2000.

[12] L. Li. High-level Petri Net Model of Logic Program
with Negation .IEEE Transactions on Knowledge and
Data Engineering, 6:382 –395, 1994.

[13] N. Moenne-Loccoz, F. Bremond, and M. Thonnat. Re-
current Bayesian Network for the Recognition of Hu-
man Behaviors from Video.ICVS, pages 68–77, 2003.

[14] T. Murata and J. Yim. Petri net Methods for Reason-
ing in Real-Time Control Systems.1995 IEEE Inter-
national Symposium on Circuits and Systems, 1:517
–520, 1995.

[15] T. Murata and D. Zhang. A Predicate-Transition
Net Model for Parallel Interpretation of Logic Pro-
grams. IEEE Transactions on Software Engineering,
14(4):481–497, 1988.

[16] N. Oliver, B. Rosario, and A. Pentland. A Bayesian
Computer Vision System for Modeling Human Inter-
actions.Proceedings of Intl. Conference on Vision Sys-
tems ICVS99. Gran Canaria. Spain., January 1999.

[17] J. L. Peterson. Petri Nets.ACM Computer Surveys,
9:223–252, 1977.

[18] C. S. Pinhanez and A. F. Bobick. Human Action
Detection Using PNF Propagation of Temporal Con-
straints.CVPR, January 1998.

[19] P. Remagnino, T. Tan, and K. Baker. Agent Ori-
ented Annotation in Model Based Visual Surveillance.
ICCV, 4-7 January 1998,Bombay, India, pages 857–
862, January 1998.

[20] N. Rota and M. Thonnat. Activity Recognition from
Video Sequences using Declarative Models.ECAI
2000, pages 673–680, 2000.

8

[21] T. Starner and A.Pentland. Real-time American
Sign Language Recognition from Video Using Hidden
Markov Models.Proceedings of International Sympo-
sium on Computer Vision, pages 265 –270, November
1995.

[22] V. Vu, F. Bremond, and M. Thonnat. Automatic Video
Interpretation: A Recognition Algorithm for Tempo-
ral Scenarios Based on Pre-compiled Scenario Mod-
els. ICVS, pages 523–533, 2003.

[23] A. K. Zaidi. On Temporal Logic Programming Using
Petri Nets. IEEE Transactions on Systems, Man and
Cybernetics A, 29(3):245 –254, May 1999.

9

