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Exact and Approximate Solutions of
the Perspective-Three-Point Problem

Daniel DeMenthon and Larry S. Davis

Abstract—Model-based pose estimation techniques that match image
and model triangles require large numbers of matching operations in real-
world applications. We show that by using approximations to perspective,
2-D lookup tables can be built for each of the triangles of the models.
An approximation called “weak perspective” has been applied previously
to this problem; we consider two other perspective approximations:
paraperspective and orthoperspective. These approximations produce
lower errors for off-center image features than weak perspective.

Index Terms—Inverse perspective of triangles, lookup tables, orthop-
erspective, paraperspective, perspective-n-point problem, pose computa-
tion, robot vision, scaled orthographic projection, 3-D object recognition,
weak perspective.

I. INTRODUCTION

Model-based pose estimation of 3-D objects from a single view has
been a major focus of research in robot vision. One of the techniques
commonly used consists of locating “interest points” [9] on models
of the objects, detecting these points in the image, and matching
subsets of these image points against subsets of the interest points
of the models. Knowing that a given subset of points of an object
is projected on the image into a given subset of points determines
constraints on the object location in space. The validity of a match
is estimated either by verifying that the object at the found location
does project onto the given image {7] or by checking whether many
other matches determine a similar location.

Fischler and Bolles [4] coined the term “Perspective-n-point prob-
lem” for the problem of finding the position and orientation of an
object from the images of n points at known locations on the object.
Their paper provides solutions and useful insights to this problem
(see also [6] for a review of solutions and a solution for four points).
The question of how many points should be taken as subsets in an
object pose or recognition system has generated some interest. Many
researchers have considered three point solutions [10], [12}, [9], [7]
because it is the smallest subset that yields a finite number of object
poses, generally two poses (four poses in some image configurations).
The perspective-three-point problem, which is also called the triangle
pose problem [10], has been solved in many different ways. A review
of the major direct solutions for three points under exact perspective
is provided in [5]. Yet another direct solution is described in this paper
with parameters that are convenient for comparison with the proposed
approximate methods. The drawback to solving the triangle pose
problem with exact perspective is that it is slow, requiring quite a few
floating-point operations. The speed of computation of the triangle
pose is of importance in the overall performance of an object pose or
recognition system since it is performed for many or all possible
combinations of triples of both image feature points and model
interest points. The problem is significant even for present massively
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parallel machines because in real-world problems, the number of
combinations is so large that each processing element would have
to serially process several model-image triplet combinations.

Some researchers have proposed simpler computational solutions
that use an approximation of perspective—the scaled orthographic
perspective (which is also called weak perspective [13])—which
leads to simpler computations of the triangle pose. For example,
object recognition systems such as the ORA system of Hutten-
locher [7] and the geometric hashing system of Lamdan et al
[9] have relied on the computation of the pose of triangles by
weak perspective approximations. Other object recognition systems
have also used weak perspective approximation on nontriangular
combinations of features [14], [15]. However, the authors do not
discuss the errors introduced by the approximation in comparison
with an exact perspective approach. This is one of the topics of this
paper. We also show that weak perspective is only one possible
approximation for simplifying the problem and is not necessarily
the best. Two other approximations (paraperspective [1], [11] and a
new approximation that we call orthoperspective) are found to yield
similar expressions in the proposed framework. Orthoperspective is
a perspective approximation that yields simple expressions in this
type of problem and may also be useful in other computer vision
applications. It is a local scaled orthographic projection using a plane
normal to one of the rays. It is, in fact, a transformation that is
equivalent to a virtual camera rotation recentering the image in the
image plane [8], followed by a weak perspective, followed by the
inverse virtual camera rotation. Of the three approximations, weak
perspective is the least atiractive with respect to pose errors because
its performance deteriorates for locations far from the image center.
Paraperspective and orthoperspective do not have this drawback.
Finally, we show that the angular terms of the approximated pose of a
given triangle can be expressed simply as functions of two parameters
of the image triangle and, therefore, can be precomputed in a 2-D
lookup table, resulting in a very fast pose estimation algorithm.

II. EXACT AND APPROXIMATE
PERSPECTIVE: THE TWO-POINT PROBLEM

We consider a simple “perspective-two-point problem” (perspec-
tive of line segments) to introduce three perspective approximations:
weak perspective, paraperspective, and orthoperspective. We express
the constraint imposed on the position of a line segment of known
length D; with end points Mo and M; when the images mo and m;
of the end points are given. The position of the segment could be
expressed by the two parameters Ry and R:, which are distances of
the end points My and M; from the projection center along the lines
of sight of the images mo and m1. An alternative choice, which leads
to simpler expressions and to insights on perspective approximations,
is the pair (Ro, 61), where 6 is the angle that the segment Mo M;
makes with the line of sight Omg (Fig. 1). Other analyses benefiting
from the use of these parameters can be found in [8]. The angle
between the lines of sight Omo and Om, is called 7.

A. Exact Perspective

In the exact perspective projection (Fig. 1), M1 is on the line of
sight Om,. In triangle O Mo My, the angle at the vertex O is 11, and
the angle at vertex M is 6; — v1. The law of sines for this triangle
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Fig. 1. Exact perspective and perspective approximations for a pair of points.

yields the following relation:

sin(01 - "/1) .
— " =sinm. 1
Ro/D: T @
Of course, this relation does not define the position of the pair of
points Mo and M; uniquely. One more constraint is necessary, for
example, an angular constraint with another pair (Section V), or the
requirement that the segment be horizontal.

B. Weak Perspective

In the weak perspective approximation, a plane II parallel to the
image plane is drawn through one of the points of the pair, say, Mo
(Fig. 1). Point M is projected to H by orthographic projection onto
this plane, and mn is the perspective image of H:. The image segment
mom; is the image of MoH;, and since these two segments are
parallel, the image mom is just a scaled version of the orthographic
projection Mo H1 of Mo M, ; hence, this approximation is sometimes
called a “scaled orthographic projection.”

In this configuration, the angle §1 is defined as the angle between
Mo M; and the optical axis OC. We also define the angle 31 between
mom; and a plane perpendicular to Omyo. This angle is calculated
from the dot product of Omo and mom1. Applying the law of sines
in triangles OMo H, and MoH, M, yields

sin 6,

Ro/D1 —

sin v
cos(m + ).

@

C. Paraperspective

In this approximation, as in weak perspective, a plane I through
point Mo parallel to the image plane is considered. However, point
M, projects onto this plane to Q; in an oblique projection parallel to
the line of sight Omg such that m, is the perspective image of Q1.

1101

Applying the law of sines in triangles OMoQ, and MoQ1 M, yields

sinf; _ sin7yicos 3 3)
Ro/Dy  cos(m + B1).

D. Orthoperspective

In this approximation, a plane II through point Mo perpendicular to
the line of sight Omy is considered. Point M; projects onto this plane
at H using an orthogonal projection such that m, is the perspective
image of H;. Considering triangles OMyH, and Mo H, M; yields

sin 1
Ro/D:

Notice that if we rotate the camera around the center of projection
O to bring the optical axis to the line of sight Omy, the image
plane becomes parallel to the plane I on which we performed
the orthogonal projection. This type of camera rotation is called a
standard rotation by Kanatani [8]. After this camera rotation, or-
thoperspective is simply a scaled orthographic projection. Therefore,
orthoperspective is equivalent to 1) a virtual rotation of the camera
around the center of projection to make a chosen line of sight (Omyo in
our line segment example) coincide with the optical axis, 2) a scaled
orthographic projection of the recentered image, and 3) the inverse
camera rotation that brings the camera back to its original position.
The camera rotations remove the dependency on the offset of the
projection in the image plane. For this reason, orthoperspective is a
better approximation to perspective than weak perspective for image
clements that are not centered in the image plane.

When is the expression for orthoperspective a good approxima-
tion for the exact perspective expression? Equation (1) for exact
perspective can be rewritten as

= tan . @

sinf, tan yi
Ro/Dl ! —tan'yl/tan(h.

This equation approaches the orthoperspective equation when the
term tan i/ tan 6; becomes small compared with 1. This occurs
when the world line segment is nearly perpendicular to its lines of
sight (tan 6, large) and/or when its size is small with respect to its
distance from the camera (tan; small).

Orthoperspective and paraperspective yield very similar results.
One way to understand this is to rewrite paraperspective equation
3) as

sinf; tan m
Ro/ Dy T (1 -tanm tanB1).

In the denominator, the term tan v tan 31 is small compared with
1 since it is the product of two terms that are both generally small.
The expression is then close to

sin 64

Ro/D1

which is the expression obtained for orthoperspective.

= tany

III. THE PERSPECTIVE-THREE-POINT PROBLEM

The simple expressions developed in Section II for the perspective-
two-point problem are now combined to solve the perspective-three-
point problem. The points mo, m1, and mg are the known images
of world points Mo, M1, and M2 with known relative geometry but
unknown positions along their lines of sight (Fig. 2). The line segment
mom; in the image plane is the image of segment Mo M of length
D,, and moms, is the image of Mo M, of length D,. An additional
constraint is provided by the knowledge of the angle M, MoM; at
vertex Mo, which we call a. The triangle pose in space is completely
determined by the location of the image points mo, m1, and m2
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Fig. 2. Exact perspective and orthoperspective for a triplet of points.

(which is known from the image) by the range Ry of the vertex
My along the line of sight Omo (which is to be computed from the
image/world triangle pair) and by the angles 6; and 6, (which are
also to be computed) that the sides Mo My and My M-, make with the
line of sight O, (with the optical axis direction in the case of weak
perspective). Once these unknowns are determined, the 3-D positions
of the three vertices of the model triangle can be computed.

The known relation between range and angle of a world segment,
given its image, can be applied both to MoM; and MoM,. For
example, in exact perspective (see (1))

sin(fy — 1) sin(f2 — o)
Ry /D, Ry /Do
A solution for the angles is found first. Dividing the two equations
eliminates Ry and yields

= sin 41, = sin y,.

sin(6) — 1)

- =K
sin(f2 — v2)

©)
where K" is a known quantity depending only on the observables
7172, D1, and Dj:
K = Snn/Dy

sin vz /Ds.
We call K" the foreshortening ratio because it is a ratio of foreshort-
ening measures for the two sides of the triangle.

Similarly, for all three approximations, the same procedure yields

©)

where A" is a known quantity depending only on the observables.
For weak perspective, paraperspective, and orthoperspective, the
expressions for K are, respectively

K= sin y1 /D1 cos(y2 + B2)
siny2 /Dy cos(y1 + 51)’
K= siny1 /Dy cos 31 cos(y2 + f2)
sinyz/ Dz cos B2 cos(v1 + B1)’
_ tanm/Dy
tan y2/Ds.

sin 6, .
-— =K
sin 6

A second relation between 6, and §; is obtained by expressing a,
which is the angle at vertex Mo of the world triangle, in terms of
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where ¢ is the angle between the image segments mom; and moma
in weak perspective and the angle between the planes of sight of
MyM, and MyM; in paraperspective and orthoperspective. This
equation was also derived in [8].

Therefore, solving for the angles 6, and 62 of the triangle sides
MoM, and MoM; requires solving a system of two equations (an
expression of the form of (7) and either (5) for exact perspective or
(6) for the three approximations) with different expressions for the
foreshortening ratio K according to the type of approximation and
with a different interpretation of 6, 62, and ¢ in the case of weak
perspective. Finding an equation in §; only is more complex for the
exact perspective than for the approximations since in the exact case,
the trigonometric functions involve #; —+; in one of the equations and
;1 in the other. The elimination process is given in the next section.

cos a = sin # sin f cos ¢ + cos b cos b2

IV. TRIANGLE POSE SOLUTIONS FOR EXACT PERSPECTIVE
Equations (5) and (7) for exact perspective can be rewritten

sint;/sint; = K.

plcrsint; + sy costy)(czsints + 52 costy)
+(c1costy — s1sinty)(c2 costy — sesintz) =g
with new unknowns
t1 =6: -7, t2=02—')’2
and coefficients
p=cos¢, g =cosa, ] = COS7],
s§1 =sin7y, c2 = cOS7e, Sz = sina.

The system is solved by transforming cos” ¢, into (1 —sin®#,) in
the second equation by isolating cos ¢z on the left-hand side, squaring
both sides, eliminating the unknown ¢, in the second equation by
replacing sin ¢; by sint; /K, obtaining an expression in sin ¢; only

by isolating cost; on the left-hand side, and, finally, squaring both
sides again. This yields a fourth-degree equation in sin” ¢;:

uasin® t, + uz sin® 1 + w2 sin? t + ugsin’ ¢y + u =0 (8)
with coefficients
o = —73, U1 = g} — 2q272, U2 = —q; — g3 — 2(p1q1 + par2),
2 2 2
u3 = p1 — 2p1q1 — 2p2qa, us = —pj — Pa-

These coefficients are themselves defined with respect to the follow-
ing coefficients:

p1 = —2(a1by + azbs), q1 = 2(ar1bs K* — gbo K),

2, 2 42 g2
p2 =aj+az —by — b3,

@2 = K*(—a} +b3) + BT K? 4 202K, 12 = K2(=02 + ¢%)
with
a; = —sic2 + pcisa, by = cice + psis2,
az = —$183 — pcica, ba = c152 — psica.

Equation (8) is a fourth-degree equation in sin® t;. We explored its
solutions in only a slice of the parameter space; the parameter v; was
fixed by the constraint tan v, = 0.1. In this case, the equation yields
only two real positive solutions. The unknown ¢, is ; — ;, which
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Fig. 3. Exact perspective solutions for triangle pose for model triangle with
Dy/D2 = 0.5, = 45° and tany; = 0.1 in image. Left column: First set
of solutions (Ro/D1,81,62). Right column: Second set of solutions.

is the angle at vertex M in the triangle OMoM;, and its value is
between zero and «. Thus, the solutions for sin ¢; must be positive,
and two solutions for sin ¢, are found. Each of these sin ¢; solutions
yields a single sin ¢ solution from (5) and a single solution for the
range Ry of point My from (1). One thus finds two complete solutions
(Ro, sin t,sin ;). However, each set leads to four possible triangles
corresponding to (Ro,t1,t2), Ro,t1,® — t2), (Ro, ™ — t1,t2), and
(Ro,® —t1, ™ — to) for a total of eight triangle solutions for the two
sets; extra solutions were introduced by the successive squarings, and
the angle at Mp is not necessarily o for these triangles. Choosing
among the eight triangles requires determining the corresponding
angles 6; and 82 (6, = ty + 1,02 = t2 + 72) and ensuring that
they satisfy (7), which specifies that the angle at Mo must be a.
From these eight triangles, only one of them in each set was found
to have an angle equal to the required angle « at its vertex Mo.
Therefore, a total of two triangle poses was found to be compatible
with (7) in the parameter space slice corresponding to tan v = 0.1.
Other constraints for +; or a wider range for the other parameters
could have allowed a total of four triangle poses; Fischler and Bolles
[4] described specific geometric configurations in which four triangles
of the same shape project to a single image triangle; more recently,
Wolfe et al. [9] showed, with a simple graphic method, that while
most of the parameter space yields only two triangle pose solutions,
there are small islands that yield four triangle solutions.
Representative pose surfaces are presented graphically in Fig. 3.
The left column of Fig. 3 shows the three diagrams of one set of
solutions (Ro, 61,62), and the right column shows the second set.
However, this separation into two sets is artificial. There is actually
only one double-valued surface of solutions obtained by combining
the surfaces from each set. The step discontinuity of the surface of one
set matches the step discontinuity of the surface of the other set so that

1103

Fig. 4. Left: Shape of solution surface for angles 6, and 62 Right: Some
closed cycles of image deformation correspond to the triangle moving from
one pose solution to the other. The motion of the triangle is represented by
a trajectory on the solution surface that loops from one ply of the surface
to the other ply.

the resulting surface does not possess any discontinuity. For example,
the general shape of the surface representing 6 is the double-valued
surface shown in Fig. 4. The surface for Ro also combines two layers
that cross each other but are closer together.

A startling consequence of the shape of the solution surface is that
the image of a triangle may be seen to deform in a closed cycle and
return to its initial shape, whereas the corresponding world triangle
has not actually returned to its original position but has gone to its
other pose solution instead. With a second identical cycle of image
deformation, the world triangle returns back to its initial position at
the beginning of the first cycle (see the right side of Fig. 4). This
occurs when the image deformations correspond to a closed cycle in
the parameter plane (K, «) around the point (K = 1,6 = a); the
world triangle position is then represented by points along trajectories
on the surfaces of the diagrams for ([Ro, 61, 62), such as the trajectory
shown on the right side of Fig. 4. In this figure, the trajectory will
follow the ramp connecting one level of the surface to the other and
end up at a different level at the end of the first image cycle. With
one more image cycle, the trajectory will follow the second ramp
and complete its cycle.

V. SOLUTIONS WITH APPROXIMATE PERSPECTIVES

With the approximate perspectives, we must solve the system of
equations
sin 8,

=K 9)

sin 62

and

sin #; sin 83 cos ¢ + cos 6, cos B2 = cos a.

(10)

In contrast with Section III, by isolating the term cos 8, cos 62 on the
right-hand side of (10) and squaring the equation, one transforms both
cos#; and cos8; into the corresponding sines in a single squaring.
Then, the terms in sin§, are eliminated using (9). This yields a
second-degree equation in sin? 8. We define X, = sin® 4, and find

sin?¢ X2 — (K* — 2K cosacos ¢ + 1)X1 + K*sin’a = 0. (11)

Equation (11) always has two positive solutions, but only the smaller
solution has magnitude less than 1 and can thus be equated to the
sine of an angle. Thus, the solution of this quadratic always yields
a single solution for sin 6,

i—ﬂ}‘” -

08 =
o [ 2sin®¢
with

B= —(K2 —2Kcosacos¢p+1), A= B? — 4K?sin’asin’¢.
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This single sine solution results in two complementary solutions for
6. They correspond to mirror image directions of Mo M with respect
to the plane normal to Omg through Mp. The corresponding value for
sin 6, obtained from (9) also yields two complementary solutions for
6. Note that we cannot combine the two solutions for ¢; and the two
solutions for 8, arbitrarily. Two of these combinations yield a positive
number for cos 8; cos 02, whereas the other two combinations result
in a negative product. One of these pairs is unacceptable and was
introduced when (7) was squared. This equation can be written

cos @, cos §2 = cosa — sin 8, sin 02 cos @

and unacceptable pairs produce opposite signs for the left- and right-
hand sides of the equation. Finally, the distance Ry of the vertex Mo
from the center of projection is computed using (4). Note that only
a single value of Ry is recovered. Thus, the two solution triangles
share a common vertex M,, whereas in exact perspective, the two
solution triangles have distinct M vertices.

The solution surfaces are almost identical to those shown in Fig.
3. They can be found in [2]. The angular solutions do not involve
~1, whereas the range Ro does depend on vi.

VI. COMPARISON OF TRIANGLE POSE OBTAINED
BY EXACT AND APPROXIMATE PERSPECTIVE

We compare the results provided by the exact perspective and the
approximations for the image and triangle geometry used for Fig. 4.
The results are plotted in Fig. 5. Since Fig. 4 was plotted using the
expression of A for orthoperspective, the resulting error diagrams are
to be interpreted either as the errors for orthoperspective independent
of the position of the triangle in the image or as the errors for all
approximations under the condition that the image vertex mo be at
the image center. The following characteristics of the errors can be
observed:

1) The error surfaces obtained by combining the solutions of the
left and right column of Fig. 5 are smooth two-layer surfaces.

2) The largest range errors occur for small values of K, i.e., when
the side MoM; is much more foreshortened than the other
side (Mo M, and Mo M- do not play symmetric roles in these
diagrams because the size of the image of MoM, is fixed
since v; and A are fixed).

3) The largest angular errors occur along the line (K = 1,¢ < «)
and reach almost 10° in these valleys of the surfaces. At the
edges of the diagrams, the angular errors are around 2 or 3°.

VII. Lookup TABLES

The main advantage of using approximate perspective resides in
the fact that small lookup tables can be constructed. The solutions
for the angles 6, and @2 depend only on two parameters (K™ and ¢),
whereas the range Ro requires the use of -y, in (4) once the angles
are found. For each triangle of features of an object, a 2-D table can
be generated in which the possible values for , and # are stored
for a range of the observable parameters K and ¢. From an image
of the triangle, the parameters K and ¢ are calculated, according
to expressions that are specific to the type of approximation chosen
(Section III), and the angles are read from the table. Then, the range
Ry is calculated using the parameter v; computed from the image
and using (4).

We implemented this technique on a 16K Connection Machine
without floating-point processors. The pose estimate of a single
polyhedron with 40 triangles with a smooth background is found
in around 1 s [3]. This involves comparing all pairs of image and
model triangles and clustering the resulting set of pose estimates.
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Fig. 5. Errors for triangle pose using orthoperspective for model triangle
with Dy /D2 = 0.5,a = 45°, and tany; = 0.1 in image. Left column:
Errors for first set of solutions (Ro/Ds,61,62). Right column: Errors for
second set of solutions.

The error diagrams shown in Fig. 5 are useful for increasing the
accuracy of pose estimation by lookup tables. The table cells for
which the approximate pose is very different from the exact pose
(for example, for K close to one and ¢ < o, as seen in Fig. 5) can
be flagged, and the pairs of model and image triangles corresponding
to these table cells can be disregarded.

VII. CONCLUSIONS

We have compared several approximate methods for the
perspective-three-point problem: orthoperspective, paraperspective,
and weak perspective. Orthoperspective is equivalent to a combi-
nation of a camera rotation that recenters the triangle and a weak
perspective. It yields results similar to paraperspective and produces
approximation errors that are lower than those with weak perspective
for off-centered triangles. We have shown that with these approximate
methods, 2-D lookup tables can be used to reduce the number of
runtime floating-point operations needed to compute pose estimates.
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Projection-Based Approach to Image
Analysis: Pattern Recognition and
Representation in the Position-Orientation Space
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Abstract— A method for image analysis, based on the formalism
of functional analysis, is proposed. This approach, which is employed
for pattern recognition in the combined position-orientation space, is
motivated by a variety of neurophysiological findings that emphasize
the importance of the orientation feature in visual image processing and
analysis. The approach is applied to the so-called “Glass patterns,” which
are special cases of images characterized uniquely by their orientational
feature of local correlations between pairs of corresponding dots. The
approach can be of interest in the analysis of optical flow.
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1. INTRODUCTION

The present study is concerned with the general problem of pattern
classification and recognition with special emphasis on images that
are fully characterized by their representation over the positional-
orientational space. The approach is based on one of the most salient
properties exhibited by cells in the primary visual cortex—their
orientational selectivity. Physiological findings, which were first
reported by Hubel and Wiesel [1], show that cells in the visual
cortex are sensitive to specific spatial domains in the visual field of
view (the so-called receptive fields) and have orientational selectivity.
These physiological findings indicate that the orientational feature is
extracted locally but that there also exists a global representation
that can be considered as a mapping or projection onto the cortex
according to orientation. Our approach deals specifically with the
orientation as the only feature to be extracted locally and over which
a global percept can be formulated. A similar processing scheme
can be formulated over other feature domains as well as extended to
multifeature domains.

Random-dot textures with local correlations between adjacent dots
are uniquely characterized by their orientational feature. The Glass
patterns, which were first introduced by L. Glass in 1969 [2], are
such a well-studied example. The basic family of these patterns, as
presented in the literature, is shown in Fig. 1(a); they are created by
superimposition of two identical random-dot fields with one of them
rotated, expanded, or translated relative to the other, thus inducing a
structured global percept consisting of concentric circles, stars, and
straight lines, respectively. In the present study, we use a variant
technique of constructing the patterns from pseudorandom dot fields
with homogeneous displacements [3].

Previous studies related to Glass patterns dealt with psychophysical
experiments [3]-[6] and algorithmic analysis of the transition from
the dot input z-y plane to dipoles, which are groupings of correlated
dots in the input defined in the x-y-§ plane [3], [4], {7}-9]. This
transition is illustrated in Fig. 1(b). Regarding the algorithmic aspect,
previous studies have related so far only to the local processing stage
of determining the corresponding dots in the patterns. The purpose
of the present work is to investigate global processing with regard to
the spatial-orientational space. As such, it extends previous studies
and considers the recognition of the global patterns. A theoretical
approach dealing with the global effect as perceived by our visual
system is presented.

Other studies have also found the position-orientation space im-
portant in image analysis. One example is the “p space” [10],
where line-orientation discontinuities are extracted for enhancing the
contrast of the most perceptually significant lines in an image and for
segmenting the image into perceptually significant segments. Other
related examples are referred to and discussed in [10]. Although the
approach presented in this paper is motivated by human vision, it
does not necessarily intend to provide an explanation of the human
perception. Rather, it mimics its capabilities and motivates biological
models similar to the proposed formalism.

1L ‘ANALYSIS OF POSITION-ORIENTATION SPACE

A. Objective

The proposed theoretical approach is based on image representation
in a vector space, which is spanned by an orthogonal basis, and on
an isometric operator that projects the input pattern into the RN
parameter space (feature space), where N is the dimensionality of
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