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Abstract

Arya, S., D. DeMenthon, P. Meer and L.S. Davis, Textural analysis of range images, Pattern Recognition Letters 12 (1991)

619-626.

This paper addresses the problem of texture discrimination in range images. The range data is transformed to a common coor-
dinate system, and then resampled to generate a regular grid of points in order to eliminate the effect of different sampling
rates. Eight statistical textural features based on co-occurrence matrices are computed on the resampled data, and are used to
discriminate between two classes of natural surfaces consisting of pebbles of different sizes lying on a plane. Seven of the eight
textural features are found to be useful in discriminating between these two classes. The experiments also confirm the impor-
tance of resampling the data before computing the textural features.

Keywords. Texture analysis.

1. Introduction

This paper addresses the problem of texture
discrimination in range data. Our long term goal is
to be able to segment a range image into regions of
uniform range texture (such as shrubs versus grass)
for purposes of visual cross country navigation.

The problem of identification and description of
texture in grey level images has been extensively
studied (e.g. see survey by Haralick, 1979). It has
also been pointed out that texture analysis techni-
ques developed for grey level images are ap-
plicable, in principle, to three-dimensional range
data (Morgenthaler et al., 1982). However, most
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of the methods developed for describing texture in
grey level images do not take into account the fact
that the image characteristics of textured surfaces
depend upon:

(1) the relative orientation of the textured sur-
face and the image plane, and

(2) the distance between the textured surface and
the image plane.

Much work has also been done on the problem of
using texture in grey level images as a cue for com-
puting the orientation and depth of the textured
surface. Two different kinds of general techniques
have been used for this purpose. The first deduces
orientation using texture gradients such as the
systematic variation in the density of texture
elements in the perspective projection of a slanted
textured surface (Rosenfeld, 1975; Aloimonos and
Swain, 1985; Kanatani and Chou, 1986). The sec-
ond uses purely local properties such as the distor-
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tion in the distribution of edge directions caused by
projective foreshortening (Witkin, 1981; Davis et
al., 1983; Kanatani, 1984). However, when range
information is available the problem of determining
the orientation and {epth of the textured surface is
simplified. It is pddsible to use this information to
‘correct’ image patches for range and orientation
and, after suitable transformations, compute their
textural properties. The problems that must be ad-
dressed to perform these corrections are:

(1) transforming the data to a common coor-
dinate system, ’

(2) resampling of the data in order to generate a
regular grid' of points, and

(3) fitting surfaces.to textured patches.

We tried to distinguish between two classes of
natural surfaces for our'experiments. The first
class consisted of small pebbles (size about 1 cm)
lying on a plane, and the second class consisted of
somewhat larger pebbles (size about 1.5 ¢cm). For
each of these two classes, eight range images were
taken, the relative position of the range scanner
and the plane being different for each image. The
CVL Light-Stripe Range Scanner, described in
DeMenthon et al. (1987), was used to produce the
images (Section 2). Since the range scanner samples
different parts of a.surface at different sampling
intervals, the range image contains information
about points which are not spaced at regular in-
tervals.
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A plane is fitted to the points represented by the
range image, using the robust least median of
squares method (Section 3), and the residual from
the plane is computed at each point. This yields the
non-uniformly sampled range image which con-.
sists of the residuals from the plane for different
points on the plane (Section 4.1). The points on the
plane are spaced at irregular intervals, usually at a
distance of 1-2 mm from one another. The next
step is to compute a uniformly sampled range im-
age which consists of the residuals from the plane
for points on the plane at regular intervals (Section
4.2). Finally we compute textural features from co-
occurrence matrices for the uniformly sampled
range image, and use them to discriminate between
the two classes of natural surfaces (Section 5). The
experimental results are presented in Section 6, and
the concluding remarks are given in Section 7.

2. Creating range images

The production of range images with the CVL
Light-Stripe Range Scanner has been described in
DeMenthon et al. (1987). Here we briefly outline
the method. The ranging instrument comprises a
light-emitting slit, a step-motor controlled mirror
and a CCD camera compact enough to be mounted
on the tool plate of a robot arm. The stripe of light
produced by a laser source is incident on the mir-
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Figure 1. Calculating the range.
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Table 1
Sampling intervals for range images of smaller pebbles
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Table 2
Sampling intervals for range images of larger pebbles

' row- column- angle row column angle
interval interval (degree) interval interval ., (degree)
(mm) (mm) (mm) (mm) o

image 1 0.87-1.95 0.65-1.95 22-52 image 1 1.12-1.83 1.10-2.06 25-45
image 2 1.04-1.52 1.07-1.88 21-40 image 2 1.08-1.81 1.11-2.16 20-44
image 3 1.21-1.70 1.25-1.95 27-41 image 3 1.25-1.61 1.53-2.18 17-33
image 4 1.12-1.61 1.14-1.88 26-41 image 4 1.07-1.92 1.05-2.16 23-47
image 5 1.11-1.83 0.99-1.89 29-47 image 5 1.32-1.53 1.69-2.14 15-26
image 6 0.96-1.34 0.97-1.81 8-33 image 6 0.99-1.97 0.88-2.13 22-49
image 7 1.38-1.64 1.66-2.10 24-33 image 7 1.09-1.70 1.23-2.23 14-39
image 8 1.19-1.61 1.49-2.39 4-31 Iimage 8 " 1.06-2.03 0.97-2.15 26-50

ror, which is rotated to project the light-sheet at
varying angles. For each position of the mirror, the
ranges of the world points are placed in the same
row of the range image. The light-sheet intersects
the world scene in a planar stripe whose image is
detected in the camera image plane. Figure 1 shows
how the range of a world point P with respect to
the mirror is computed given the position of the
mirror and the projection of the world point P on
the image plane. The 512 x 512 range image pro-
duced by this system contains the ranges of the
world points with respect to the mirror axis, and
this is resampled to yield a 256 X 128 image. That
portion of this image which contains the world
points for the textured surface under consideration
is referred to as the raw range image.

'

Tables 1 and 2 give the approximate sampling
rates along the rows and columns for each of the
eight range images corresponding to the small peb-
bles (Figure 2a), and for each of the eight range im-
ages corresponding to the large pebbles (Figure
2b), respectively. The angle column in these tables
gives the angle that the light stripe makes with the
textured surface. '

3. Robust lead median of squares method

Least squares regress‘i‘on, while commonly em-
ployed in computer vision, is highly unreliable
when some of the data deviates severely from the
linear relation followed by the majority of the

Figure 2. Examples of non-uniformly sampled range images. (a) Small pebbles. (b) Large pebbles.
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data. Hence the need for robust methods which
can work well even in the presence of outliers (data
points that ,yield significant deviations). These
outliers need not necessarily be error points; for
example, wheh two surfaces meet in a window then
we can re'ga'rd'the'smﬂrface generating the majority
‘of points in the window as the signal and the re-
maining points as outliers. The breakdown point
of a regression method is the smallest fraction of
contamination of the data which yields arbitrarily
incorrect estimates. The Least Median of Squares
(LMedS) method has the additional advantage
over other robust methods of having a high
breakdown point of "50%. Rousseeuw (1984) pro-
posed the LMedS method in which the parameters
are estimated by solving the minimization problem

min med r/. ‘ 8))
1

Here the residual r; is the difference for the ith
point between the data actually observed and the
estimated fit on the basis of the model. This does
not have a closed-form solution; it is solved by
generating possible solutions and searching among
them to find the best one (Meer et al., 1990).
We now describe the process of fitting a plane
using this method to a set of n data points denoted
by indices i}, ...,i,. Let the plane be denoted by

z=Po+Bix+ By 2

For any set of three points denoted by indices i, j, k,
p, and B, are computed directly using the follow-
ing planar fit equations:

_ (zi— Z,‘)(}’j ~ Vi) — (Zj =z )i "J’j)
3 i =X = yi) — &= x (Vi = )
(zj— 2;)(x; — X)) — (2 — 24 ) (x; — X;)
()’i“}’j)(xj‘xk) - (.yj“yk)(xi—xj) ’

By N €))

Ba= 4)
B, is then computed so as to solve the following
minimization problem:

minmed 7 given ) and f,. %)
1

This procedure may then be repeated for every
other set of three points, and the values of
Bo> B1, B> chosen are those that correspond to the
smallest value for (5).

Steele and Steiger (1986) proposed the following
method to solve (5). Define
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5i=z;— B Xi— B>
and reorder the set of indices such that
‘Sl <Sz< b QS,,.

Define M; and D; as follows:

Si+|ns2)+Si
Mi=( +Ln2) +5i) for 1<i< {f} 6)
2 2
Si+|ns2] —Si
D; :EL/ZZJ———}- for 1<i< ’731 . )

The functions | - | and [ -7 are the floor and
ceiling functions respectively. It can be seen that
the following relation holds for any k:

Dy = My —5; = Sy | ns2) — My ®
The following two ordering relations also hold for
any k:
<D, if k<i<k+|n/2], ‘
2D, if 1<i<k or )

k+|n/2]<ign.

| M~ ;]

From the above two ordering relations it follows
that for any k:

Dk=med|Mk—S,-i. (10)

Next we write an expression for the median of the
residuals when M, is chosen as the intercept, that
is, when By=M,;:

med‘r,-| = med|z,~—b]x,-— bei—Mk|
=med|Mk—S,-|. (11)
Combining (11) with (10), we get that when
Bo=M,,
med|r;| = Dy. (12)
Assuming that the optimal value of the intercept
By is one of the M,’s, then clearly, to minimize (5),

we must choose B, = M; where [/ satisfies the fol-
lowing equation:

D,=m_inD,». (13)
1

It is beyond the scope of the paper to show that the
optimal value of f, must be one of the M;’s; for a
proof of this see Rousseeuw (1987, p. 166).
Carrying out the above procedure for every set
of three points makes it computationally very ex-
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pensive since there are C(n, 3) such triplets and for
each of them n values have to be sorted yielding a
" "time complexity of O(n*log n). However, if we are
willing to tolerate a small probability of error E,
then it is not necessary to consider every set of
three points. If only m sets of three points are con-
sidered, then the probability that every one of
these sets contains an outlier is

E=[1-1-%" (14)

where f is the fraction of points that are outliers.
For our experiments we choose m = 36 which yields
a probability of error of less than a percent even
when the fraction of outliers is as high as 49.9%.

4. Processing the range image

The advantage of computing the textural features
on the uniformly sampled range image in pre-
ference to the non-uniformly sampled range image
is that it eliminates the effect of different sampling
rates. The creation of the uniformly sampled range
image from the raw range image involves two
steps. First we transform the range data to a com-
mon coordinate system yielding the non-uniformly
sampled range image. Next we resample the range
data to generate a regular grid of points yielding
the uniformly sampled range image.

4.1. Creating the non-uniformly sampled range
image

A plane Pis fitted to the entire set of points lying
on the textured surface, using the robust least me-
dian of squares method, described in the previous
section. The set of points is next transformed to a
reference frame which has x-axis and y-axis on the
plane P, and z-axis normal to the plane P. The
non-uniformly sampled range image NU(i, j) then
consists of the residuals (the z-values) from the
plane P, for points lying at irregular intervals on
the plane P.

4.2. Creating the uniformly sampled range image

A uniformly sampled range image is created
which consists of the z-values (residuals) at a rec-
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tangular grid N, X N, of points lying on the least
median of squares plane P. The grid intérval, J,
was chosen to be the same for both the x and the

- y directions. We chose J to be 2.5 mm in, order to

be greater than the sampling interval in the range
image (1-2 mm), and it was kept the same for all
the 16 uniformly sampled range images.

The residual at each point of the grid is com-
puted using a robust interpolation technique. For
each grid point we find 25 of its nearest neighbors
on the non-uniformly sampled range image and fit
a plane to them using the robust least median of
squares method described earlier. The residual at
the grid points is found by interpolation from the
fitted plane.

5. Computation of textural features

For visual images the computation of textural
features using spatial co-occurrence matrices has
been described in Haralick (1979). Our method for
computing texture features on uniformly sampled
range images is analogous. The uniformly sampled
range image consists of the residuals from the least
median of squares plane P on a rectangular grid
with. N, positions along the x-direction and N,
positions along the y-direction. The residuals are
quantized into N, levels where each level denotes
an interval of size 1 mm. The co-occurrence p(i, j)
of quantized residuals i and j for an image 7/ is
defined as the number of pairs of grid points hav-
ing quantized residuals / and j, respectively, and
which bear a fixed relationship to one another on
the grid. Four different co-occurrence matrices
that correspond to four different relationships on
the grid are used in the experiments. Each of these
corresponds to a distance of one grid unit, but to
different angles of 0° (horizontal nearest neigh-
bor), 90° (vertical nearest neighbor), 45° and 135°
(nearest neighbors along the two diagonals, respec-
tively). Formally, these four different co-occur-
rence matrices are defined in Haralick et al. (1973):

p(i,J,0°)
#{((k,]),(m,n)) | k—=m=0, |I-n|=1,
Ik, 1)=1i, I(m,n) =},

Il
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Table 3
Textural features of ‘uniformly sampled range images of smaller pebbles
' A ;3 S Ja Js Je S J8
image 1 0.05 2.60 0.33 1.94 0.55 3.34 1.13 1.36
. image 2“‘ 0.04 3.56 0.16 2.12 0.49 3.48 1.48 1.47
image 3w 0.04 3.28 0.37 2.61 0.51 3.62 1.40 1.46
image 4 0.05 3.20 0.18 1.94 0.50 3.39 1.25 1.42
image 5 0.05 2.90 0.25 1.93 0.52 3.39 1.20 1.40
image 6 ' 0.04 3.36 0.32 2.46 0.49 3.62 1.36 1.46
image 7 0.04 5.75 0.11 3.24 0.47 3.70 2.82 1.62
image 8 0.04 3.59 0.29 2.52 0.49 3.64 1.50 1.49
@, J, 4}5") o are computed for each of the four normalized co-

= #{((k,!),(m;n)) | (k—m=1, [-n=—1) or
(k—m=—1, I-n=1),
Ik, l)=i, I(m,n)=/},

(i, J,90°)
=#{((k,1),(m,n))|[k——m’:l, 1_’1:0,
' I(k, 1) =i, I(m,n)=j},

p(i,j,135°)
= #{((k,]),(m,n)) | (k—m=1, [-n=1) or
(k—m=-1, I-n=-1),

Ik, 1) =i, I(m,n)=j}

where ((k,1), (m,n)) € (N, X N,) X (N, X N,).

The co-occurrence matrix is normalized by
dividing each entry by the sum of all the entries in
the matrix, to yield the normalized co-occurrence
matrix. Eight textural features, all of which were
taken from Appendix 1 of Haralick et al. (1973),

occurrence matrices. The textural features used are
Angular Second Moment (f;), Contrast (f;), Cor-
relation (f;), Sum of Squares (f;), Inverse Dif-
ference Moment (f;), Entropy (f), Difference
Variance (f;), and Difference Entropy (f3). Each
of these textural features is averaged over its four
values computed for the four normalized co-
occurrence matrices. The averaging is done so as to
ensure that the textural features have the same
values for two images that are identical except that
one is rotated with respect to the other.

6. Experimental results

Tables 3 and 4 show the results of computing the
eight textural features on the eight uniformly
sampled range images corresponding to the class of
small and large pebbles, respectively. It can be seen
from these two tables that, with the exception of
the seventh image of the small pebbles, the follow-

Table 4
Textural features of uniformly sampled range images of larger pebbles
N f S Ja Js Je S J3

image 1 0.03 5.72 0.14 3.31 0.42 3.90 2.14 1.65
image 2 0.03 5.72 0.21 3.63 0.42 3.98 2.21 1.65
image 3 0.02 6.08 0.33 4.52 0.42 4.14 2.40 1.68
image 4 0.03 5.15 0.17 3.10 0.45 3.83 2.17 1.62
image 5 0.02 7.83 0.27 5.36 0.38 4.34 2.98 1.79
image 6 0.02 6.77 0.20 4.23 0.41 4.07 2.67 1.71
image 7 0.02 6.65 0.26 4.50 0.41 4.17 2.65 1.72
image 8 0.03 5.99 0.14 3.48 0.43 3.93 2.39 1.67
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Table 5
‘ Textural features of non-uniformly sampled range images of smaller pebbles !
‘ N /) S Ja Js Je Jr S8
image 1 0.06 1.11 0.77 2.46 0.71 3.16 0.67 1.01 ',”'
image 2 0.04 1.75 0.71 3.06 0.61 3.52 0.89 1.19
image 3 0.03 2.38 0.70 4.03 0.57 3.80 1.16 1.32
image 4 0.04 1.66 0.74 3.20 0.62 3.54 0.83 1.18
image 5 0.05 1.47 0.74 2.85 0.65 3.41 0.78 1.14
image 6 0.04 2.18 0.72 3.87 0.62 3.66 1.25 1.23
image 7 0.03 3.00 0.69 4.79 0.53 3.97 1.43 1.41
image 8 0.03 2.83 0.70 4.80 0.54 4.00 1.34 1.39

ing features have no overlap for the two tables —
Angular Second Moment (f;), Contrast (f;), Sum
of Squares (f;), Inverse Difference Moment (fs),
Entropy (fs), Difference Variance (f7), and Dif-
-ference Entropy (fz). These features therefore
have the potential of being used to discriminate
between the two classes. In order to examine the
importance of computing the uniformly sampled
range images, we also computed the same eight
textural features on the non-uniformly sampled
range images. (The computation of co-occurrence
matrices in the case of non-uniformly sampled
range images is analogous to the computation for
uniformly sampled range images; instead of
nearest neighbors on a regular grid, we now have
nearest neighbors between resolution cells.) Tables
5 and 6 show the results of computing these tex-
tural features on the non-uniformly sampled range
images corresponding to the class of small and
large pebbles, respectively. It can be seen from
these two tables that all the features have a large

0

overlap. This empirically demonstrates the impor-
tance of computing textural features using the
uniformly sampled range images instead of the
non-uniformly sampled range images.

7. Concluding remarks

We have described a method for classifying tex-
tures in range images using statistical textural
features based on co-occurrence matrices. Before
being able to compute these textural features, we
have to transform the range data to a common
coordinate system and resample the data in order
to generate a regular grid of points. In our initial
experiments seven of the features have proven to
be of use. We intend to carry out these experiments
with more classes of textures. The long term goal
is to be able to segment a range image into regions
of uniform range texture for purposes of visual
cross country navigation.

Table 6
Textural features of non-uniformly sampled range images of larger pebbles
N S J3 Ja Js Je f J3

image 1 0.03 1.85 0.80 4.55 0.62 3.75 0.99 1.21
image 2 0.03 2.17 0.78 4.95 0.60 3.84 1.18 1.25
image 3 0.02 3.41 0.75 6.86 0.52 4.24 1.67 1.45
image 4 0.03 2.00 0.80 4.94 0.62 3.78 1.12 1.21
image 5 0.02 4.27 0.75 8.53 0.47 4.48 1.97 1.55
image 6 0.03 1.83 0.83 5.39 0.64 3.79 1.04 1.18
image 7 0.02 2.64 0.82 7.37 0.57 4.16 1.38 1.34
image 8 0.04 1.77 0.81 4.61 0.63 3.72 0.97 1.18
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