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Abstract

A new method is presented for reconstructing a 3D road from a
single image. It finds the images of opposite points of the road; op-
posite points are points which face each other on the opposite sides of
the road; the images of these points are called matching points. For
points chosen from one side of the road image, the proposed algorithm
finds all the matching point candidates on the other side, based on
local properties of a road. However these solutions do not ily
satisfy the global properties of a typical road. A dynamic program-
ming algorithm is applied to reject the candidates which do not fit the
global road.

A benchmark using synthetic roads is described, which shows that
the roads reconstructed by the proposed method match the actual
roads better than two other road reconstruction algorithms. Exper-
iments with 50 road images taken by the Autonomous Land Vehicle
(ALV) showed that the method is robust with real world data, and that
the reconstructions are fairly consistent with road profiles obtained by
fusion between range images and video images.

1 Introduction

Recent efforts in robotics have concentrated on the ability of au-
tonomous systems to follow roads [13,12,11,5]. For robustness in a
variety of conditions, these systems can be driven by a supervisor
system reasoning about information provided by several algorithms,
such as stereo algorithms, stereo motion algorithms, algorithms us-
ing single video frames or combining video frames and range images,
Kalman predictors combining information obtained from several vehi-
cle positions, etc. Some algorithms may monitor the road over a short
distance or along a single edge, for input to a fast steering control
loop [5]. Other algorithms may attempt to extend their analysis to
the most distant available data in front of the vehicle, for input to
longer term reasoning modules.

This paper presents a new algorithm able to reconstruct the road
shape from a single image, providing the three dimensional profile of
the road in front of the vehicle, often up to the point where the road be-
comes hidden. Reconstructing the road over a large distance presents
several advantages. The reconstructions from several video frames can
be overlapped, and the evidence from each reconstruction can be com-
bined for added reliability. The vehicle can make estimations of road
turne well in advance, and adjust its speed accordingly. Finally, the
reconstructed road elements can be registered against the road data
stored in the vehicle road map data base, providing the position of the
vehicle on the map. For these reasons this long range reconstruction
of the road can be usefully combined with steering control based on
Kalman prediction [5)].

Road reconstruction from a single image is a “shape-from-contour”
problem. It is obviously under-constrained, yielding an infinity of
possible road shapes unless constraints about the road structure in
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the 3D scene are introduced. Thus a road model has to be assumed,
which provides a reasonable set of additional constraints.

The simplest model which has been applied [12] is the Flat-Earth
geometry model ; the road is assumed planar and in the same plane
which supports the vehicle, and the road image is back-projected onto
this plane. The method is fast and does not deteriorate when image
analysis gives ragged road image edges. But it is very semsitive to
the difference between the assumed and actual camera tilt angle with
respect to the ground. For a camera mounted on a vehicle at 3.5
meters above the ground, a world point at 30 meters in front of the
vehicle will be reconstructed at 55 meters if the ground plane angle
is overestimated by 3 degrees and at 21 meters if it is underestimated
by 3 degrees, an error range of more than 100%. Consequently, the
Flat-Earth algorithm is more suitable for reconstructing the road just
in front of the vehicle than for a long range analysis.

More sophisticated algorithms have attempted to utilise the con-
straint that a road generally keeps an approximately constant width
[12]. The problem with applying this constraint is that one must find
the pairs of points separated by a distance equal to the road width, in
straight or curved parts of the road. We call the problem of finding
the correct pairs of points in the image the matching point problem.
This is one of the problems addressed in this paper.

The constant road width constraint is not sufficient. Another con-
straint must be added for the reconstruction to be possible. We have
chosen the zero-bank constraint, specifying that the road does not tilt
sideways. A road model combining constant width and sero bank was
originally suggested in [10].

In previous work, we developed an incremental road reconstruction
method based on these constraints [2,3] in which a new pair of edge
points could be found if we had already found a neighbor pair of edge
points; the road edges were reconstructed incrementally from edge
points close to the vehicle to edge points in the distance. This method
is fragile because any increment of construction depends on the pre-
vious elements in the chain. Any failure of the road reconstruction at
any point can be fatal to the further progress of the reconstruction.

This incremental method used a discrete approach. Road recon-
structions based on a differential approach can be found in [7,6]. An
interesting alternative to the global dynamic programming optimiza-
tion proposed in the present paper can be found in [8].

2 The matching point problem

Consider the image of a railroad track and its railroad ties, and
assume that some appropriate image processing techniques have re-
duced the images of the rails to curves and the images of the ties to
line segments between these curves (Figure 1). The positions of the
end points of the tie segments on the curves of the rail are the matching
points in the image. The reconstruction of the shape of the railroad
track in 3D space uses the matching points and is straightforward if
three hypotheses are made:
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1. The width w of the railroad track is constant and known.

N
2. The coordinates of the vertical unit vector V' are known in the
camera coordinate system.

3. The railroad ties are approximately horisontal.

Obviously, the last hypothesis does not constrain the railroad itself to
be horisontal. Similarly, the stairs in a spiral staircase have horisontal
step edges, but the ruled surface defined by these step edges is far from
horisontal.

Consider two matching points a; and az, the end points of the
image of a tie. The corresponding vectors from the viewpoint O to
these image points will be denoted by @; and @3. The corresponding
world points A; and A; are defined by

— — —
Ay =)ay, Az=XAzaz

since world points and their images are on the same line of sight.

Figure 1: Reconstructing positions of world railroad ties from their
images.

The world line segment is assumed horisontal; the two parameters
A1 and A, are then related by

Ag=m);
with
—
a-v
m= pary
-V

The requirement that the distance between Z; and Z; be equal to the
width w completely constraints the parameters:

w

2 2
(@ +ma} —2mai - a3)}

M (1)

Thus the two curves of the rails in the scene can be in general
uniquely reconstructed from their images up to a scale factor, if the
ties are assumed horisontal and of constant length. Problems occur
only if the railroad image crosses the horizon, as noted in [8]. In this
case the ties are horisontal on the horison line and their range cannot
be determined, as can be seen from the equations above.

Consider now the problem of reconstructing a road from its image,
once some appropriate image processing techniques have isolated the
curves corresponding to the road edges in the image. This time of
course we do not have the images of railroad tie segments to help us.
The method we propose is thus to find as a first step the end points
of line segments which correspond to images of railroad tie segments,
and then do the 3D reconstruction of the end points of the images of
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these segments by the method just described for the railroad. We call
these world segments corresponding to railroad ties “cross-segments”,
and their end points “opposite points®. The images of these points are
the “matching pointe®. The main problem of the reconstruction of a
road from its image can then be stated as: Given a point on one edge
of the road image, where is the matching point on the other edge?
We choose a road model similar to the railroad model: the road is
modelled as a space ribbon generated by a centerline spine and hori-
sontal cross-segments of constant length cutting the spine at their mid-
points at a normal to the spine. This modelling gives cross-segments
the properties of railroad ties:
o Cross-segments are horisontal, i.e. perpendicular to the vertical (on
the ALV the vertical was detected by trim sensors).
e Cr ts have tant length (the road width).
o Cross-segments are perpendicular to both road edges, i.e. locally
perpendicular to the centerline of the road.

Saying that cross-segments are normal to both road edges means
that they are normal to the tangents to the edges at their end points.
Note that this does not generally mean that the tangents to oppo-
site points are parallel. In [4], however, we show that assuming the
tangents to opposite points to be approximately parallel is a reason-
able assumption in most configurations. This assumption considerably
simplifies the recovery of opposite points from the image. It is added
to our road model and used in the following section.

3 Conditions for two image points to be
matching points

Consider a world road defined by two 3D curves E; and E;, and the
road image defined by two image curves e; and ¢;. Assume that two
opposite points A; and Az on road edges E; and E; have been found.
Their images are a; and aa (Figure 2), and the following properties
follow from the world road model:

1 1

A

1
Figure 2: The cross-segment of the world road is assumed horisontal
and perpendicular to the tangents at its end points. The tangents are
assumed parallel. A condition satisfied by the matching points in the
image which also involves the image tangents and the vertical direction
is deduced.

1. The segment A; A is horisontal.

2. The tangents to the road edges at A, and A; are perpendicular
to A; Aa.

3. The tangents to A; and Ao are approximately parallel.



!
4. The tangent @; to the image edge ¢, at a, is the image of the
! '
tangent A: to the world edge E; at A;; the tangent a3 to the

image edge e; at a3 is the image of the tangent Zz' to E3 in Aj.
This is a general property of projected curves and tangents.

In deriving the following consequences, we make use of the property
that the direction of the intersection of two planes is perpendicular to
the normals of each plane, and can be obtained by the cross-product
of the two normals.

3.1 Directions of tangents to opposite points

? ’
If a; and a; are matching points and a; and a3 are the tangents
to the image edges at these points, the direction of the corresponding
world tangents is

(@ x @) x (@ x a)
Proof: If a; and a; are images of opposite points, the world tangents
to the world edges are parallel. Since the images of the world tangents

are @ and @I, the world tangents lie on the planes (a{ , a_fl) and

(O_a; s E') respectively. These planes are not parallel since they share
the point O and they do not coincide. Since the tangents are parallel,
they must be parallel to the int of these pl The direction
of this intersection is given by the previous expression.

3.2 Direction of a cross-segment

ae

If a; and a3 are matching points and V' the vertical vector, the direc-
tion of the world cross-segment is V' x (a1 x 33).

Proof: Ay Az belongs to a horisontal plane since it is horisontal.
Since a;a; is the image of A;A;, A;1Aj; also belongs to the plane
(Oay, Oas). This plane is generally not horisontal. Thus the direction
of the segment Aj Ag is given by the intersection of a horisontal plane
with the plane (Oa;, Oa;). The normal to the horisontal plane is the

vertical vector V. The direction of the normal to the plane (Oa;, Oas)

is given by cross-product (a1 xaz). Thus the direction of 4 142 is given
37 — —

by V x (a1 x 8z).

3.3 Matching condition

If ay and a; are matching points and ?{’ and Fg'l are the tangent
directions to the image edges in these points, the following relation
holds: , ,

—

[V x(al xa3)]- (8 x &l ) x (a3 x 33 )| =0 @
Proof: If a; and a; are images of opposite points, the direction of the

cross-segment A; Az is perpendicular to the direction of the parallel
tangents.

3.4 Local normal to the road

U 1
If a; and a; are matching points and a; and az are the tangents to
the image edges at these points, the local normal to the world road
has the direction given by

F=[Vx@xa)xl@xa)x@xaz) 6
Proof: The local planar patch of the world road is defined by A, A2 and
by the parallel tangents at A; and A;. The direction of the normal to

this plane is the croes-product of the directions of the cross-segment
and of the tangents.

To summarisze, when a point a; and the tangent a_fl to the road
image are given, Equation 2 becomes an equation which must be sat-
isfied by the coordinates of a; and the slope of the tangent to the edge
in a5 in order for a; to be a matching point to a;. We can also find the
direction of the normal along the corresponding world cross-segment
A Az
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4 Search for a matching point of a given
image point

If a point a; is chosen on one edge image, and if the other edge
image is a polygonal line, the matching point az can be located on
one of the line segments of the polygonal line, or at one of the vertices
between the segments. All the line segmente and all the vertices are
checked, because a single point a; can have several matching point
candidates due, for example, to edge irregularities. Other reasons
are considered in [4]. For each line segment and for each vertex, the
equations developed in the next two subsections are applied.

4.1 Search for a matching point on a line segment
Assume that the segment being considered is the segment pz2gz. The
matching point a is on this segment if

@3 = P2 + A\pada

with A between 0 and 1. The point az must also, with its tangent to
the edge, satisfy Equation 2. The tangent Fg', to the edge image in
aj is approximated by the vector pzq2. We replace @', @ by their
values pzg3, and P +Apags in Equation 2, and transform cross-product
combinations into dot products by the well-known identity

-

Ex(TxT)=(7 )b - (7 - )<

The resulting value for A is

V- a)® m-(X-
(V- a@)E -me) - (K-

)V - 5)
ANV mn)

)

where K = (3 x @) x (7 X ). If A is between 0 and 1, the
intersection is between the end points of line segment pzqz, and the
value of X specifies the position of a; on pz2gz. The search also takes
place among the vertices between the line segments.

4.2 Search for a matching point at a vertex

We can think of a point gz linking two line segments pz2gs and gzra
as a point at which the slope of the tangent to the edge changes from
the slope of the segment pa2qz to the slope of the segment gara. An
approach similar to the previous subsection is followed. A matching
point a is at the vertex gz if

—

!

@ = pzas + p(@72 — P2g2)

with 4 between 0 and 1. For this point to be a matching point to a;,
it must also satisfy Equation 2. This produces the following value for
p

by (M - %) (At - 7ars) - (73 - @) (M - 7ars) )
(M -3 - (@avs — 7o) ~ (- B)M - 373 — ad)

;s —
where nj =ar x a3, M=V x (a1 X @2)

If the resulting value of y is between 0 and 1, a matching point a2
to the point a; is located at the vertex g¢2.

5 Global road optimization

One of the edge images provides ive points a;, and for each
point, an exhaustive search for matching points a3 is done for both
the line segments of the other edge image and the vertices between
the segments, producing several matching candidates az. We choose
to represent both edge images with a list of linked line segments. The



points a; are taken at the midpoints of the line segments, and the
tangents a1 are in the direction of the line segments themselves. For
each point a;, generally one to three points a; are found, sometimes
more for very noisy images; but generally one point a; is a more
“correct” matching point for the point a, in terms of compatibility
with the global road reconstruction. It is also possible that because
of noise in the image, the correct match is not among the results, in
which case all points a; are bad matching points. Thus a method
for choosing matching points compatible with a realistic world road is
required, and is now discussed.

When a point is chosen on one road image edge, the exhaustive
search matches this point with several points on the other road image
edge. This group of matching points pairs is the image of a group of
world cross-segments, but the world road can pass through at most one
of these cross-segments. If a sequence of points along one road edge
is taken, a sequence of groups of cross-segments is obtained, and the
world road must go through at most one of the cross-segments of each
group, in the same order as the sequence of points chosen on the first
road image edge. Each cross-segment can be represented by a node
of a graph (Figure 3). The graph is made up of groups of nodes and
a path must be found which visits each group in the proper sequence
and goes through at most one node of each group. This path must also
maximise an evaluation function which characterises the “goodness”
of the road. The total evaluation function is the sum of the evaluation
functions of each of the arcs of the graph. The evaluation function
for an arc is the sum of weighted criteria C; which are chosen to
characterise a good pairing of two neighbor cross-segments A; Az and
B, B;. The following criteria were chosen

e The local normal N for the cross-segment (Equation 3) should
be close to vertical;

=N.V should be close to 1.

The slope of the patch of two should
be close to vertical. -

— —
C; = [a(A1Bax A3B,)]-V should be close to 1 {« is the constant

which normalises the vector which follows).

ive cr gment

The average of the directions of the two cross-segments should
be perpendicular to the line joining their midpoints (trapesoid
constraint, see [3]).

Cs =1—a(A1 4z + B1Ba) - a(A; By + A3 B;) should be close to
1.

Furthermore, when the value of one these criteria falls under an ac-
ceptable value (say, cosine of 15 degrees for the road slope criterion
C,), the arc is labelled unacceptable, and cannot be included in a
path.

image piane
(side view)

Group of nodes

Figure 3: Reconstruction of the world road by a dynamic programming
method.

It would also be desirable to introduce constraints uuch as a re-
quirement for small differences of slope bet e patches,
bat this type of relation involves three cro! ts and
complicates the interaction graph. The proposed unary and binary
criteria seem to be sufficient for discarding unwanted nodes.
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Dynamic programming is an appropriate technique for this type of
path optimisation [1]. The following rules were added to the classic
dynamic programming technique.

e A node of group k + 1 may have no acceptable arc extending
the paths which reached group k. An arc is labelled unaccept-
able when any of the criteria which make up the arc evaluation
function is under a given threshold. This unconnected node is
marked as unusable to the nodes of the next group.

If in group k + 1 no node can be linked to any of the nodes of
group k, group k + 1 is discarded altogether and the group of
nodes k + 2 is considered instead, and so on, until a group is
found to extend the paths which reached group k. If no further
group succeeds in extending the paths, the paths terminate at
group k, and among them the path with the largest evaluation
function is chosen.

6 Experiments

The algorithm was tested on synthetic road images from roads
with variations in bank and width, and on a large number of road
images from the DARPA Autonomous Land Vehicle. The results for
the synthetic road are presented, and the results from the real world
data are discussed.

6.1 Synthetic road image
The road profile from which synthetic images were created is shown

in Figure 4. The road centerline profile (side view) is an element of a
sinusoid from a crest to a trough (slope downward) or from a trough to

Elevation H

45

57m
Slope = 1.11 H/L

&7m

4m

Vehicie angie = 5 degrees.

p- Camera Camera

Camera iilt = =16.3 degrees.
Camera

Image center (258, 242) height =3.5m

Figure 4: Synthetic road geometry with two 45 degree turns and cam-
era position. Left: Top view. Right: Side view showing the 1/4 period
sinusoidal profile of the centerline over the length L.



a crest (slope upward), and the road slope can be modified by varying
the sinusoid amplitude. What we call road slope in the following is
the slope at the midpoint of the straight piece between the two turns.
In this synthetic road it is found equal to H/38.9, where H is the
difference of level in meters between the lowest and highest point of
the road. In top view and going away from the camera, the road has
a short straight stretch, then takes a 45 degree left turn and a similar
ngllt turn, separated by a short straight line. The camera position,
orientation and par , also listed in that figure, were taken equal
to the va.luu which descnbe the camera of the ALV.

A benchmark was developed for ing the perfor of the
proposed matching points algorithm and other algorithms. A recon-
structed road is labelled “usable” if the centerline of the reconstructed
road stays between the edges of the actual road and does not cut these
edges. In other words, a usable reconstruction is a reconstruction in
which no cross-segment is off the actual road by more than half its
length. When a large number of roads with random variations are
considered, percentages of usable.roads are calculated.

To obtain the benchmark values described above, random varia-
tions are introduced around the nominal values of the road width (4
m) and the road bank (0 degrees). The random width and bank vari-
ations are given Gaussian distributions of predefined standard devia-
tions, and several standard deviations are considered for different road
slopes. Five road slopes were chosen: -10%, -5%, 0%, 5%, 10%. To
reduce the number of combinations of width and bank variations, only

mﬂnthetlc Image Worid Road
1
shp.-ql‘ggs"xmnzlo‘gmzm
Top Uiew Side View
Synthetic Image rid Roafl
Slope -1 OOS, Yarwidth 0.40, Varbank 4.00 3
widthstdv 0.428, bankstdy 4.850
Top Diew Side View

Figure 5: Examples of reconstructions from matching points in images
of roads with large random variations in width and bank. Slope and
variations are indicated above the images.

the following five width and bank standard deviations were studied for
each of the road slopes:

(0 m, O degrees), (+0.1 m, +1 degree), (+0.2 m,+2 degrees), (+0.3
m, +3 degrees), (0.4 m, +4 degrees).
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Forty roads were produced for each of these 25 combinations of
slopes and standard deviations, and the results for these forty roads
were averaged to yield the points shown in the following graphs.

Figure 5 shows two examples of r tructions for images of down-
ward slopes with large variations of width and bank. Notice that the
maximum considered width and bank variations (+0.4 m, + 4 degrees,
bottom left) correspond to very large distortions in the images. The

usable length is almost 100% for both examples.

In Figure 6, three algorithms are compared: the present matching
points algorithm, the step-by-step (incremental) sero-bank algorithm
[2,3], and the Flat-Earth algorithm. A global measure of performance
is obtained by averaging the results obtained for the 5 slope configu-
rations, as if the results were averaged from tests over a terrain com-
prising equal proportions of S-turns at slopes ~10%, ~5%, 0%, 5%, and
10%. The Flat-Earth algorithm gives reconstructed roads which are
100% usable if the slope is sero, and unusable all the way down if the
slope is not sero, independent of width and bank variations; thus the
average proportion of usable road produced by the Flat-Earth algo-
rithm is 20%. The averaging over various slopes is more natural for
the other two algorithms, because the results are found to be almost
independent of the slope.

P:ﬂ'm @& Maiching points aigorthm
reconstructions wll Swo-ty-step zero-benk aigorihm
1004 o - Figt Earth asigoriten
b | of -
-
oo+ ol
ol -
o4
ol .
20 e — — — —
o t u t +
] LX) 02 03 0.4 m of wickh standend deviation
° 1 2 3 4 degrees of bank standend devistion
Vsaie length <«6& Maiching points aigorithm
o il Step-0y-step zero-dank sigorithm
100 m— Flat Earth aigorthm
- o -
<>
o ->
® ol
wl
— — —-— —
2
o - . . .
T + + t +
L] [ 5} 02 o3 04 m of widkh standard devistion
0 1 2 K] 4 degrees of bank standard devietion

Figure 6: Comparison of the matching points algorithm with the
step-by-step sero-bank algorithm and the Flat Earth algorithm. Re-
sults for different road elevations were averaged. In this figure, a usable
reconstructed road is such that its centerline will not cross the edges
of the actual road. Top: Percentage of usable reconstructions for var-
ious combined width and bank variations. Bottom: Length of usable
reconstructed road length.

Figure 6 shows that the matching point algorithm gives better re-
sults than the other two algorithms in term of usable reconstruction.
More details can be found in [4].

6.2 Real Imaging

Experiments were also performed with actual road images obtained
with the ALV when it was operational at Martin Marietta, Denver.
These experiments are described in [9]. Reconstructions were pro-
duced for about 50 road configurations including combinations of turns
and slope changes. The “ground truth® was provided by a fusion algo-



rithm combining range data and video data; however, the ERIM laser
ranger has a limited range of action. Only the first 15 meters of the
road could be reconstructed by the fusion method. The reconstruction
by the sero-bank algorithm extended at least twice as far in most road
configurations. In the short stretch where both reconstructions were

ilable, the agr t was considered good in top view. Differences
of elevations appeared in some experiments in side view between the
reconstructions of the range-video fusion and the present algorithm,
although the difference would probably not have resulted in different
steerings of the vehicle. This seems to be due to the fact that we ob-
tained the road width from the Flat-Earth approximation applied to
the closest road segment, a method which is sensitive to local bumps
under the wheels of the vehicle. In such situations of course the range-
video fusion algorithm still produces a correct road profile. Further
discussions can be found in [9].

7 Conclusions

In this work, we have derived an analytical condition for points
taken on the image of road edges to be matching points, i.e. images
of opposite edge points. Taking one point on one road image edge,
we generally find more than one candidate matching point. All can-
didates were back-projected to 3D, and a dynamic programming op-
timigation built a physically acceptable road through the appropriate
cross-segments.

A benchmark was applied to compare this algorithm with two oth-
ers, the step-by-step sero-bank algorithm and the Flat-Earth algo-
rithm. The proposed matching points algorithm was found definitely
more effective than the other algorithms over all the considered vari-
ations in width and bank.

Experiments with real world data and comparisons with road re-
constructions obtained by fusion between video data and range data
showed a good agreement in the short range for which range data are
available, provided the scaling factor left undefined by the algorithm is
well chosen. The proposed algorithm can use the information provided
by the range data to calculate this scaling factor, and extend the road
reconstruction to the road parts which are in the video camera field
of view but out of the range scanner field.
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