SPATIO-TEMPORAL SEGMENTATION OF VIDEO
BY HIERARCHICAL MEAN SHIFT ANALYSIS

Daniel DeMenthon

Language and Media Processing (LAMP)
University of Maryland, College Park, MD 20742, USA
daniel @cfar.umd.edu

ABSTRACT

We describe a simple new technique for spatio-temporal segmenta-
tion of video sequences. Each pixel of a 3D space-time video stack
is mapped to a 7D feature point whose coordinates include three
color components, two motion angle components and two motion
position components. The clustering of these feature points pro-
vides color segmentation and motion segmentation, as well as a
consistent labeling of regions over time which amounts to region
tracking. For this task we have adopted a hierarchical clustering
method which operates by repeatedly applying mean shift analysis
over increasing large ranges, using at each pass the cluster centers
of the previous pass, with weights equal to the counts of the points
that contributed to the clusters. This technique has lower com-
plexity for large mean shift radii than regular mean shift analysis
because it can use binary tree structures more efficiently during
range search. In addition, it provides a hierarchical segmentation
of the data. Applications include video compression and compact
descriptions of video sequences for video indexing and retrieval
applications.

1. INTRODUCTION AND RELATED WORK

One of the goals of video analysis is to find out as much as possi-
ble about what is going on in the scene from what was captured by
the video. “Finding out what is going on” is more formally called
“semantic interpretation”. To interpret a scene, one first needs to
label independent objects. Boundaries of objects typically corre-
spond to boundaries of color patches in the video. (However, sit-
uations where a foreground object moves in front of a background
of similar color are common.) In addition, when the camera trans-
lates or when objects move independently, boundaries of objects
correspond to boundaries across which the optical flow changes in
the video, and the patches inside these image boundaries display
some consistency of optical flow. (However, optical flow is notori-
ously unreliable at object boundaries; also, moving objects could
stand still during a shot, or first move then stand still.) To over-
come the limitations of motion segmentation and color segmenta-
tion and to maximize their chance of extracting object information,
researchers have been combining motion and color cues in various
ways. The task of dividing video frames into patches that may
correspond to objects in the scene is generally called object-based
segmentation [15], layer extraction [14, 13, 24], sprite representa-
tion [14] or space-time segmentation [1, 3, 11, 19, 25] (there are
arguably subtle differences between these concepts).

The support of this research by the Department of Defense under
Grant MDA9049-6C-1250 is gratefully acknowledged.

There are two main categories of approaches for space-time
segmentation of video sequences, (1) those that track regions from
frame to frame, and (2) those that consider the whole 3D volume of
pixels and attempt a segmentation of pixel volumes in that block.
Our approach belongs to the second category. These two cate-
gories have parallels in the field of line detection in images: one
can detect lines either by walking along a line and merging pix-
els for which edge directions are similar to previous edge direc-
tions [20]; or one can take decisions based on global information,
for example by mapping the pixels to points in a feature space
where edge directions and normal distances are components, and
clustering these points (this is a Hough transform).

For the frame-by-frame tracking category of spatio-temporal
methods, there are more variants than we can adequately review
here. Typically, a new frame is divided into small patches (i.e,
over-segmented). The patches of the previous frame are shifted to
the new frame by use of optical flow information, and the decision
of merging regions within frames and from frame pairs is taken
according to a similarity measure reflecting their spatial proxim-
ity, color similarity and/or motion similarity [4, 8, 10, 19, 23, 25].
To verify motion similarity, parallelism of optical flow vectors can
be verified. However, this tends to divide planar background sur-
faces with large depth variations, such as the ground plane, into
several regions in cases of camera translation. Instead, affine mo-
tion models can been applied to patches, and patch merging can
be based on a similarity measure between motion models, which
produces larger regions at once [24]. Interesting new variations
on this theme, using statistical modeling [14, 15] or subspace con-
straints [13], have been proposed recently.

The second category of approaches attempts to directly seg-
ment the 3D spatio-temporal pixel volume obtained by piling up
frames into a video stack. This category has received relatively lit-
tle attention so far, partly because of its computational demands.
Spatio-temporal analysis was pioneered by Adelson and Bergen [1],
and Bolles et al. [5], and specifically applied to segmentation by
Allmen [3] in the early 90s. Recently, Shi and Malik [21], fol-
lowed by Fowlkes et al.[11] have obtained space-time segmen-
tations by first constructing a graph in which the nodes are vol-
ume pixels and arcs are considered between all pixels, both within
frames and between consecutive frames. The strengths of these
arcs are decreasing functions of euclidean distances between fea-
ture vectors of the pixels, with feature components including color
components, frame coordinates and optical flow components. Par-
titioning into space-time regions is performed by applying K-means
clustering in a distance-preserving feature subpace. Finding the
subspace involves solving a large system, a problem that requires

Fig. 1. A feature vector with seven components can be defined for
each pixel, such that pixels along the trajectory of a color patch
in the video stack all have feature vectors that are neighbors in
feature space.

some simplifications, either by considering simply neighbor pix-
els in the graph [21], or by applying the Nystrom approximation
while using only a sampling of the pixels [11].

Our algorithm belongs to the second category but significantly
differs from this prior work. Color patches produce generalized
cylinders in the pixel volume. Color flows [8], action cylinders
[22] and feature trajectories [2] describe similar space-time enti-
ties in the literature. We refer to these as video strands. Our goals
are to extract these strands, group them according to their motions,
and characterize them by color, average radius, and position and
orientation of their axis. Our algorithm consists first of mapping
pixels from all the frames at once into a feature space such that pix-
els corresponding to the same color patch appearing in successive
frames will be mapped to close neighbors in feature space even if
the patch moves rapidly. Clustering is performed in feature space
using a more efficient version of mean shift analysis, hierarchical
mean shift, and the centers of the clusters directly define what col-
ors and motion should be assigned to the pixels that contributed to
the clusters. The result is a color segmentation of the video stack,
and a motion segmentation.

In Section 2, we describe our technique for mapping pixels to
points of a feature space. In Section 3, we provide an overview of
the complete algorithm for clustering the mapped points, and for
using the clusters to consistently label the pixels corresponding
to moving patches. In Section 4, we introduce hierarchical mean
shift analysis, and we present results that support our claim that
this algorithm produces a significant computational improvement.
Section 5 presents segmentation results and outlines how the space
time segmentation can be used to extract concise representations
suitable for video retrieval. Finally, Section 6 describes the appli-
cation of hierarchical mean shift to hierarchical representations of
video.

2. PIXEL MAPPING INTO FEATURE SPACE

Consider the pixel Py = (t,z,y) at frame ¢ and position (z,)
belonging to a color patch (Fig. 1). In frame ¢ + 1, the patch
has moved by incremental displacements « in the z direction and
v in the y direction, and the pixel P; of frame ¢ has moved to
Py = (t+ 1,z + u,y + v) (u and v can of course be equal

to zero). Therefore, the 3D direction (1, u, v) is the direction of
motion of the patch in the video stack. The motion vector (1, u, v)
can be found by optical flow computation.

Images of color patches in a video stack produce trajectories
along which color components tend to remain stable over a few
frames, and motion vectors (1, w,v) for pixels of these patches
tend to remain parallel. Instead of directly using « and v to char-
acterize the motions of color patches, we project the motion vec-
tors on the planes (¢,z) and (t,y) of the video stack and for each
projection we define an angle in degrees with respect to the plane
(z,y). These angles are called a; and a, (see Fig. 1):

180 180
az; =90 — — arctanu; ay = 90 — — arctanv (1)

When the color patch does not move, both angles are 90 degrees.
Angles approach 0 or 180 degrees only if motions are very fast.
While the angles obtained from the local optical flow computa-
tion characterize local orientation trends of trajectories, after the
clustering process (described below) the angles of the cluster cen-
ters characterize the global orientations of patch trajectories over
several frames.

Not only are the color and direction of motion approximately
constant for a color patch, but in addition the motion vectors are
aligned, i.e. the supporting lines of the motion vectors are approx-
imately superposed (Fig. 1). For each pixel P;, we project the
supporting line of its motion vector on planes (¢, z) and (¢, y) and
obtain two lines L, and L,. Having defined the point O at the
center of the video stack and the two projections O, and O, of O
onto these planes, we can compute the distance D, of O, to L,
and the distance D, from O, to L,, for a pixel located at ¢, z, y in
the video stack as follows

D, =
D, =

(2 — Tmaz/2) sinae — (t — tmaz/2) cos e (2)
(Y — Ymaz/2) sinay — (t — tmaea/2) cosay (3)

where tmaz, Tmaz aNd Ymaes are the dimensions of the video
stack. In the following, D, and D, are called the motion distances
for pixel P. Motion distances present the advantage of defining
the positions of pixels in the video stack in a way that is approx-
imately invariant to the motion shifts of the pixels (using z and y
as position features of pixels would provide less compact clusters
for pixels of moving patches).

3. ALGORITHM FOR SPACE-TIME SEGMENTATION

At each pixel of a video stack, seven components are defined, two
motion angles, two motion distances, and three color parameters.
The CIE L*u*v* color space is used for the color components so
that small distances along the color dimensions tend to correspond
to perceptually similar colors [6]. We can interpret these quanti-
ties as feature components; they define a feature vector which can
be represented as a point in feature space. Since the components
are approximate invariants for pixels of color patches, the points
of the feature space that represent pixels of the same color patch
moving through time tend to be close together and to form a clus-
ter. Therefore cluster analysis in this feature space will allow us
to detect and segment pixels belonging to color patches evolving
through time.

Our approach to space-time segmentation is illustrated by Fig. 2:
(1) map pixels to points in feature space, (2) determine the clus-
ters in feature space (Section 4), (3) assign to each point the label
of the cluster to which belongs, and assign to each pixel of the

Louv
color
mponents

Angles

(b) Mapping to

(a) Spatio-tempor 7D ‘feature space

volume

(c) Strands found by clustering

Fig. 2. Mapping process between pixels and feature space points,
and inverse mapping to obtain segmented regions and video
strands.

video stack the label of its mapped point. Since each pixel of a
color patch tends to be mapped to the same neighborhood and to
belong to the same feature space cluster, color patch pixels tend to
be assigned the same label across all the frames of a video stack.
Therefore they are tracked from frame to frame, in the sense that
given one frame and color patches, these patches have labels in
that frame, and we can find their positions in the next frames as
the patches with the same labels. See for example Fig. 6 showing
color patches being assigned the same label from frame to frame.

We also find the centers of the clusters in feature space. Since
the feature space has seven dimensions, these centers have seven
components, which together characterize average values of the
motion angles, motion distances and colors of the patches through
time. We obtain a color segmentation of the video stack by re-
placing the color of each pixel by the color of the cluster to which
it is assigned (Fig. 2(c)). Similarly, we can obtain a motion seg-
mentation by assigning to each pixel the motion of its cluster. In
addition, we can concisely describe a video clip by its set of clus-
ter centers, whose components describe average characteristics of
the video strands.

4. CLUSTERING BY HIERARCHICAL MEAN SHIFT
ANALYSIS

Mean shift analysis is a relatively new clustering approach orig-
inally advocated by Fukunaga [12], and recently extended and
brought to the attention of the image analysis community by Yi-
zong Cheng [9], and then by Comaniciu and Meer [6, 7] who con-
vincingly applied it to image segmentation and frame-by-frame
tracking. Refer to these references for details, and to Fig. 3 forare-
minder of the principle of the method. Leung et al. elegantly prove
([16], p. 1359, Section 3.3) that performing mean shift analysis
with a Gaussian kernel is equivalent to performing the following
two steps: (1) find a Parzen density estimation of the data set, and
(2) find cluster memberships of individual data points by gradient
ascent on the density estimation. By contrast with the classical
K-means approach, the clusters that are found are separated by

Fig. 3. Principle of mean shift analysis: To find cluster center
for point P, repeatedly find centroid of points inside a sphere
(initially at P1) and recenter sphere on centroid, until sphere is
stationary. (For Gaussian-kernel mean shift analysis, points further
from sphere centers are given exponentially decreasing weights in
the centroid calculation.) This is an adaptive gradient ascent in the
space of point densities.

valleys of point densities, not by artificially defined hyperplanes
at equal distance between the cluster centers. Finding the natural
borders of clusters is important, because such borders in feature
space are mapped back to more natural segmentation borders.

Mean shift clustering takes a set of background points and a
set of starting points, and requires finding centroids of background
points contained in spheres of a given radius R centered on start-
ing points, or centered on centroids found at the previous step.
Finding points within spheres consists of finding points within
range R of sphere centers. What is needed is an efficient range
search algorithm. For this task we use two functions, nn_prepare
and range_search, from the well-written TSTool package created
by Merkwirth et al. [18]. The auxiliary function nn_prepare ar-
ranges the background point set into a binary tree structure called
an ATRIA tree. A set of points is divided into two subsets by
the hyperplane half way between the two furthest points of the
set. For each subset, the center C and the enclosing radius r are
stored. This is repeated recursively for each subset until the subset
of a branch contains less than a preset number of points. During
a range search of radius R around a point A using the function
range_search, branches for which the distance AC — r is larger
than R cannot contain points within range R of A, and are pruned.

However, there is a major obstacle to using a tree structure ef-
ficiently with standard mean shift analysis: in order to produce a
small number of clusters, mean shift has to be run with a large
radius, typically up to 1/5 of the span of the largest feature com-
ponent. However, for range search utilizing a tree structure such
as the binary ATRIA tree just described or a K-d tree, the cost
for NV points is O(NV log N) only for small radii; for large radii
it is closer to O(N?), because most of the branches of the tree
must then be explored. We have adopted a hierarchical mean shift
approach to circumvent this problem:

e e first run a standard mean shift to completion with a very
small sphere radius, starting from all points of the data set
and shifting spheres over the static background of points to
reach cluster centers that are local maxima of point den-
sities. In the centroid computations used to compute the
shifts, each point is assigned a weight equal to one. Spheres
from several starting points typically converge to the same
cluster center, and these points are considered members of
the corresponding cluster.

e \\e assign to these cluster centers weights equal to the sum
of the weights of the member points.

Computation time in seconds as function of mean shift radius (as fraction of space size)
for standard (high curve) and hierarchical mean shift analysis

Fig. 4. Computation time in seconds as a function of mean shift
radius for standard mean shift (higher curve, diamond plots) and
for hierarchical mean shift (lower curve, triangle plots). The radius
is expressed as a fraction of the feature space size, and is increased
to a maximum of 0.2

e \We consider the new cloud of points composed of cluster
centers. We recompute a new binary tree. We run mean
shift using range search with a larger radius that is a small
multiple of the previous radius (we have used a multiplying
factor of 1.25 or 1.5). In the centroid computations, the
weight of each point is used.

e \We repeat the previous two steps until the desired radius
size (or the desired number of large regions) is reached.

It turns out that essentially the same method was discovered by
Leung et al. with their clustering by scale-space filtering approach
(see [16], p. 1400, Eq. 22).

Qualitatively, the segmentation obtained by this technique looks
as good or better than with the standard mean shift. As impor-
tantly, a significant speedup is achieved with this method. The
reason is that the initial tree handles a very large number IV of
points, but allows efficient range search because the radius of the
range search is small. At subsequent passes, the points are clus-
ters from the previous passes, and their number N’ gets smaller at
every pass as the radius gets larger; therefore the new tree struc-
ture generated for the range search contains N’ points, with N’
much smaller than IV when the radius is large. The complexity of
the range search then deteriorates toward O(N'2), but this is not
costly because N’ is already quite small when this occurs.

The poor performance of standard mean shift with large radii
and the effectiveness of the hierarchical mean shift solution are
illustrated in Fig. 4. In this figure, computation time is plotted
as a function of the mean shift radius, expressed as a fraction of
the data hypercube size, for standard mean shift (diamond plots)
and for hierarchical mean shift (triangle plots), for the space-time
segmentation of 12 frames of a video, corresponding to 45,000
pixels. The computing time is almost independent of the mean
shift radius for hierarchical mean shift, whereas it grows at a rate
faster than polynomial for standard mean shift.

Next, we kept the mean shift radius (i.e., the final radius in the
hierarchical mean shift algorithm) constant and equal to 1/6 of the
data hypercube size. We repeated space-time segmentation experi-
ments for a video stack containing an increasing number of frames,
from 1 to 12, with the corresponding number of pixels increas-

Computation time in seconds as function of number of pixels
for standard (high curve) and hierarchical (low curve) mean shift analysis
450 T T T T T T T

4001

3501

3001

2501

2001

150

100

i
0 05 1 15 2 25 3 35 4 45
x10*

Fig. 5. Computation time in seconds as a function of number of
pixels for standard mean shift (higher curve, square plots) and for
hierarchical mean shift (lower curve, round plots).

L [

20 40 60

20 40 60

Fig. 6. Consistent labeling of regions, shown with false colors on
12 consecutive frames (a), and shown in 12 cross-sections of the
video stack along row and time dimensions (b). Note that most of
the pixels of the tree trunk have been given a single label.

ing from 4,000 to 45,000. Results for standard mean shift (square
plots) and for hierarchical mean shift (round plots) are plotted in
Fig. 5. For the largest number of pixels, standard mean shift is al-
most 10 times slower than hierarchical mean shift. An estimate of
the slopes of the log-log versions of the two curves shows that for
standard mean shift the computation time increases as a power 1.8
of the number of pixels, i.e. almost quadratically, while for hier-
archical mean shift, computation time increases as a power 1.1 of
the number of pixel, i.e. almost linearly. The computing time per
frame for hierarchical mean shift remains sensibly constant when
the number of frames is increased (around 6 seconds per frame
in the experiments shown in Fig. 5), whereas standard mean shift
becomes impractically slow.

5. RESULTS

We provide examples of video segmentation for the flower garden
sequence. A list of 7D feature vectors was generated, one per pixel
of a video stack of twelve 88x 60 frames, with two motion angles
computed from optical flow over 20 frames by the Lucas-Kanade
method [17], two motion distances computed by the method of
Section 2, and three L*u*v color components. The motion com-
ponents were offset and scaled to ranges 0-0.8, and distance com-
ponents to ranges 0-0.6, while the color components were scaled
to ranges 0-1: instead of using ellipsoids in mean shift, we al-
ways use spheres in order to take advantage of the range search
machinery, but squeeze the data world along the components that
are less important. Motion importance is decreased because it
is less reliable than color, and distance importance is decreased
even more to avoid subdividing spatially elongated regions. The
final radius in the hierarchical mean shift analysis was 1/6, the ini-
tial radius was 1/60, and the radius multiplying factor was 1.5 at
each pass. Furthermore, we run the segmentation twice, in order
to use in the second pass the cleaner segmented optical flow ob-
tained by the first pass. This leads to qualitative improvements in
segmentation results. The code is written in Matlab, with bottle-
necks rewritten as C functions with Matlab interfaces. The TSTool
functions nn_prepare and range_search used for computing range
search [18] are also written in C with Matlab interfaces. The total
processing time per frame was around 15 seconds.

Fig. 6 shows space-time volumes labeled by this algorithm in
frames and cross-sections of the video stack in false color. These
volumes are obtained by giving a unique label to each cluster ob-
tained by hierarchical mean shift, and assigning these labels to the
pixels that were mapped to these clusters. Note that the tree trunk
is consistently labeled across the stack, and that the house regions
have the same label on the left and right of the tree; this segmen-
tation can accommodate to a certain extent both spatial and tem-
poral occlusions, because of a “Hough transform effect”: regions
that are disjoint in pixel space can be neighbors in feature space.

Figure 7 demonstrates motion segmentation. Each cluster cen-
ter has seven dimensions, including two motion angle components.
In the figure, the motion angle of each cluster center in the z di-
rection was assigned to all the pixels that contributed to the cor-
responding cluster. Faster lateral motion is coded with a lighter
color. Because the camera is translating, the images are in fact
depth maps of the scene. Note that the patch of sky on the top left
corner of the frames was coded closer than the rest of the back-
ground because texture was generated by hanging branches of the
tree. Color segmentation (not shown here) is similarly obtained by
transferring color components of cluster centers to their contribut-

20 40 60 20 40 60 20 40 60 20 40 60

20 40 60 20 40 60 20 40 60 20 40 60

o 0 [
20 40 60 20 40 60 20 40 60 20 40 60

Fig. 7. Motion segmentation of video. Color coding showing val-
ues of angles of patch trajectories in the x direction from 0 to 180.
These angles increase as distance decreases because the camera
translates in the z direction, so lighter colors correspond to closer
range.

Fig. 8. Representation of flower garden sequence as a set of lines
with specific thicknesses (video strands). The vertical dimension
is time. The thick brown line with the highest slope corresponds
to the tree trunk. The blue line on the top left corresponds to a
patch of blue sky. It is tilted as it contains tree branches that seem
to move because of camera translation. Further background lines
are almost vertical.

ing pixels.

The seven dimensions of each cluster center in feature space
describe the average color, position and orientation of a color re-
gion. These components describe the geometry and color of a
straight line in the video stack. The set of lines corresponding
to regions with more than 20 pixels in average in the frames that
they occupy is represented in Fig. 8. This is what we call a video
braid representation. This representation can describe one MB of
a half-second video with 200 bytes, which can be used as indexing
description. We are investigating retrieval techniques using this
description.

6. HIERARCHICAL SEGMENTATION FROM
HIERARCHICAL MEAN SHIFT

Hierarchical mean shift produces a hierarchical segmentation that
can be represented as a tree structure. At each pass of the pro-
cedure, clusters are merged into new clusters. Each cluster rep-
resents a region of the video block, and regions corresponding to

new clusters are groupings of regions corresponding to clusters of
the previous pass. There is a fine-to-coarse evolution of the seg-
mentation occurring from pass to pass. With a large enough radius,
we obtain a single region corresponding to the whole set of pixels.
We can generate tree representations of videos by examining the
sequence of events in the reverse order from which it was pro-
duced, i.e. from coarse to fine. We are developing applications of
this representation to video compression.

7. CONCLUSIONS

We have described a general algorithm for the space-time segmen-
tation of video sequences. Our contributions to the problem of
space-time segmentation are the following

1. Taking cues from the Hough transform, we define pixel po-
sitions by normal distances from a fixed point to lines of
motions, which are approximately invariant for pixels be-
longing to the same moving patch.

2. Hierarchical mean shift analysis is of lower empirical com-
plexity than standard mean shift analysis for useful radii
when range search is optimized with a binary tree structure.

3. Regions are simultaneously segmented and tracked by the
same mechanism; a single parameter is specified by the
user.

4. Cluster centers are compact descriptors characterizing the
video strands and are useful for video indexing and retrieval.

We have several areas of further study in mind. First, the bound-
aries of moving regions are jagged, and arguably do not look as
good as those produced hy, e.g., color-texture segmentation [10].
(Note, however, that segmentation code generally includes a post-
processing phase which merges small regions to larger neighbors
and smoothes boundaries, while we wanted to show how far our
hierarchical mean shift approach can go all by itself.) Cleaner
boundaries could be obtained if motion components of the feature
vector are given lower weight with respect to color components
in low-confidence motion field regions. Second, in the spirit of
scale-space analysis, we can analyze our hierarchical segmentation
to discover which regions remain stable through increasing mean
shift radii and give preference to these regions in the segmented
output, as suggested by Leung et al. [16]; then there would be no
parameter left to specify. Third, we need to develop efficient ways
of using video strands and hierarchical segmentation for indexing
and retrieval of large video data sets and for compression.

8. REFERENCES

[1] E.H. Adelson and J.R. Bergen, “Spatiotemporal Energy
Models for the Perception of Motion”, J. Opt. Soc. Am. A.
2(2), pp. 284-299, 1985.

[2] Z. Aghbari, K. Kaneko and A. Makinouchi, “Modeling and
Querying Videos by Content Trajectories”, IEEE Int. Con-
ference on Multimedia and Expo (ICME2000), New York,
July 2000.

[3] M. Allmen and C.R. Dyer, “Computing Spatiotemporal Re-
lations for Dynamic Perceptual Organization”, CVGIP: Im-
age Understanding, vol. 58, pp. 338-351, 1993.

[4] M. Black, “Combining Intensity and Motion for Incremental
Segmentation and Tracking over Long Image Sequences”,
ECCV 1992, pp. 485-493.

[5] R. Bolles, H. Baker, and D. Marimont, “Epipolar-Plane Im-
age Analysis: an Approach to Determining Structure from
Motion”, Int. J. of Computer Vision, 1, pp. 7-55, 1987.

[6] D.Comaniciu and P. Meer, “Mean Shift Analysis and Appli-
cations”, IEEE Int. Conf. Computer Vision, Kerkyra, Greece,
pp. 1197-1203, 1999.

[7] D. Comaniciu and P. Meer, Distribution Free Decomposition
of Multivariate Data, Pattern Analysis and Applications, \ol.
2, pp. 22-30, 1999.

[8] A. Del Bimbo, P. Pala and L. Tanganelli, “Video Retrieval
based on Dynamics of Color Flows”, ICPR 2000, vol. 1, pp.
851-854.

[9] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering”,
IEEE Trans. on PAMI, vol. 17, pp. 790-799, 1995.

[10] Y. Deng and B.S. Manjunath, “Unsupervised Segmentation
of Color-Texture Regions in Images and Video”, IEEE Trans.
on PAMI, vol. 23, no. 8, pp. 800-810, 2001.

[11] C. Fowlkes, S. Bellongie and J. Malik, “Efficient Spatiotem-
poral Grouping using the Nystrom Method”, CVPR 2001,
Kaui, pp. 1-231-238 , December 2001.

[12] Fukunaga, K., “Introduction to Statistical Pattern Recogni-
tion”, (2nd ed.), Academic Press, 1990.

[13] Q. Ke and T. Kanade, “A Subspace Approach to Layer Ex-
traction”, CVPR 2001, Kaui, pp. 1-255-262 , December
2001.

[14] N. Jojic and B. Frey, “Learning Flexible Sprites in Video
Layers”, CVPR 2001, Kaui, pp. 1-199-206 , December 2001.

[15] S. Khan and M. Shah, “Object Based Segmentation of Video
Using Color, Motion and Spatial Information”, CVPR 2001,
Kaui, pp. 11-746-751, December 2001.

[16] Y. Leung, J-S. Zhang and Z-B. Xu, “Clustering by Scale-
Space Filtering”, IEEE Trans. on PAMI, vol. 22, no. 12, pp.
1396-1410, 2000.

[17] B. Lucas and T. Kanade, “An lIterative Image Registra-
tion Technique with an Application to Stereo Vision”, Proc.
DARPA Image Understanding Workshop, pp. 121-130,
1981.

[18] C. Merkwirth, U. Parlitz and W. Lautherborn, “Fast Nearest-
Neighbor Searching for Nonlinear Signal Processing”, Phys.
Review E., vol. 62, pp. 2089-2097, 2000. TSTool package
available at http://www.physik3.gwdg.de/tstool/

[19] F. Moscheni, S. Bhattacharjee and M. Kunt, “Spatiotemporal
Segmentation Based on Region Merging”, IEEE Trans. on
PAMI, vol. 20, no. 9, pp. 897-915, 1998.

[20] R. C. Nelson, “Finding Line Segments by Stick Growing”,
IEEE Transactions on PAMI, \Vol. 16, 5, May 1994, 519-523.

[21] J. Shi and J. Malik, “Motion Segmentation and Tracking
using Normalized Cuts”, 1JCV 98, Bombay, India, January
1998.

[22] T. Syeda-Mahmood, A. Vasilescu and S. Sethi, “Recogniz-
ing Action Events from Multiple Viewpoints”, Proc. IEEE
Workshop on Detection and Recognition of Events in Video,
Vancouver, Canada, July 2001.

[23] W.B. Thompson, “Combining Motion and Contrast for Seg-
mentation”, IEEE Trans. on PAMI, pp. 543-549, 1980.

[24] J. Y. A. Wang and E. A. Adelson, “Representing Moving
Images with Layers”, IEEE Trans. on Image Processing, 3,
pp. 625-638, Sept. 1994.

[25] D. Zhong and S-F. Chang, “Spatio-Temporal Video Search
Using the Object Based Video Representation”, Proc. ICIP,
Santa Barbara, CA, October 1997.

