Y. ANSEL TENG, DANIEL DEMENTHON and LARRY S. DAVIS

Computer Vision Laboratory, Center for Automation Research
University of Maryland, College Park, MD 20742-3411, USA

In this paper, we propose a method for solving visibility-based terrain path planning
problems for groups of vehicles using data parallel machines. The discussion focuses on path
planning for two groups of vehicles so that they move in a boundmg overwatch manner.
Furthermore, the planned paths for the vehicles themselves are subject to intervisibility
constraints, configuration constraints, and different terrain traversabilities due to variations in
terrain type and slope. A spatial-temporal sampling approach is adopted to discretize the
solution space and facilitate fast computation on a data parallel machine. One of the key
computations in the planning is the region-to-region visibility analysis, which is computa-
tionally expensive but essential to the choice of subgoals to .carry out reconnaissance
activities. A parallel algorithm for this analysis is developed. By reducing the communication
complexity, our algorithm achieves much faster running time than traditional methods. The
algorithms are implemented on a Connection Machine CM-2, and the experimental results
show that the planning system effectively generates good paths.

Keywords: Terrain navigation, visibility analysis, bounding overwatch, parallel algorithms.

1. INTRODUCTION

This paper describes a path planning method for stealth terrain navigation with
bounding overwatch using a data parallel machine. This is an extension of the stealth
terrain navigation approach used by Teng, DeMenthon, and Davis.! We consider the
problem of planning paths for two groups of vehicles, each of which consists of two
vehicles, from their common initial location to their common final goal. The terrain
through which they must move is ‘“‘hostile’” in the sense that there are adversaries
moving through the terrain. The vehicles should remain hidden from the adversaries to
the greatest extent possible. Initial information is available concerning the locations
and movements of these adversaries, but it is expected that these models will degrade
over time, so that the plan developed must support reconnaissance activities. This
requirement should be fulfilled in a bounding overwatch manner such that one of the
two groups serves as observer while the other group moves along a safe path to a new
observation point using the information collected from the observer; the two groups
then switch roles. Furthermore, the planned paths for the vehicles themselves are
subject to intervisibility constrains for line of sight communication, and configuration
constraints such as those requiring that the two vehicles in a group move in parallel.
The progress of the vehicles through the terrain is differentially impeded by terrain
type and slope. Generally, these problems are instances of path planning in two-
dimensional space with time varying constraints. Such problems are known to be

International Journal of Pattern Recognition and Artificial Intelligence Vol. 6 No. 2 & 3 (1992) 395-415
© World Scientific Publishing Company

396 Y. TENG, D. DEMENTHON & L. DAVIS

computationally hard.?*> This will lead us to the development of heuristic and
approximate algorithms that can avoid a direct assault on these combigatoﬁal
problems, while at the same time developing demonstrably good solutions to such

problems.
Path planning on hostile terrains has also been explored by Mitchell* using
polyhedral terrain models, and by Metea and Tsai® using hierarchical terrain models. .

However, both plan paths for a single vehicle in a static environment, and it does not
seem feasible to extend these approaches to solve our problem. Our basic approach is
to represent the problem using discretizations of space and time, and to develop data
parallel algorithms for the fundamental underlying computations (e.g. visibility
analysis, reachability on terrain). The discretization allows'many basic computations to
be arranged in a regular pattern, and therefore to be solved in parallel efficiently.

The remainder of this paper is organized as follows: in Sec. 2 we describe our
planning scheme and its application to the above problem. Section 3 describes the
visibility analysis algorithms which are essential to the choice of path points for
maximal safety and observation points for reconnaissance activities. The algorithms are
implemented on a Connection Machine CM-26 and experimental results are shown in
Sec. 4.

2. THE PATH PLANNING SCHEME

In our path planning scheme, the path planning process is divided into stages; the
two groups take turns serving as an observer while a path is planned for the other
group at each stage. The planning process in one stage is referred to as a subplanning
process, and the length of a stage, referred to as the subplan interval, is usually
determined before the subplanning process. Since the entire planning process is done
by repeating the subplanning processes, the following discussion focuses on the
subplanning process. Since a spatial sampling approach is adopted, the terrain is
represented by regular grids with elevation data at each grid cell.

We first describe the subplanning process for a single agent, and then extend the
approach to plan for a group of agents. The criteria for choosing subgoals in the
bounding overwatch problem is described at the end of this section.

2.1. Subplanning for a Single Agent

In the subplan for a single agent, a subgoal is chosen from the area that is
reachable within the subplan interval by a good path. In the case of a single agent, a
‘‘good’’ path usually refers to a path that remains hidden from the adversaries as much .
as possible by taking advantage of the terrain. This property. is referred to as safety.

Since it is very difficult to represent the visibility map of a moving object
analytically, a temporal-sampling approach is adopted, in which a sampling period is v
determined in advance, a visibility map is computed for each sampling period, and the
safety is defined by these samples. The visibility map consists of a binary value on
each grid cell and represents the visible regions from the predicted adversary locations.

186

TERRAIN NAVIGATION PATH PLANNING 397

It is computed by the point-to-region visibility analysis algorithm which will be
described in Sec. 3.2.

These visibility maps are combined with terrain traversability using a dynamic
programming paradigm to compute the reachable region and evaluate the safety of the
best path to each grid cell in the region. This computation is performed incrementally
for each sampling period throughout the subplan interval. The data structure can be
described as a path credit table

Path_credit(P, t)

where P is the cell index and 7 is the time index. Each element counts the number of
safe points along the safest path from the initial location to the cell P at time r.
Initially.

, {1 if cell P is the initial location
Path_credit(P, 0) = .
0 - otherwise
The table is computed slice-wise for each sampling period from ¢ = 0 to the end of
the subplan interval, and the computation for each element depends on the terrain
traversability.

In our method, terrain traversability is modeled by discretizing the directions in
which the agent can move through a grid cell and associating a traversal cost for each
of them as the amount of time needed to pass through the cell in that given direction.
The cost can be determined by the slope, the type of terrain, and other factors that
may affect the mobility. Using this modeling of terrain traversability, the Path_credit
table is computed according to the following recurrence relation:

Path_credit(P, t) = Max{Path_credit(P, t — 1) + Safety(P, 1),
Path_credit(Q, t — Tcost(Q, P))
+ Safety_count(Q, t — Tcost(Q, P) + 1, ©)}

where Q@ is any neighbor of P
Tcost(Q, P) = the traversal cost through Q in the direction to P

1 if cell P is safe at time ¢
0 otherwise

Safety(P, t) = {

I
Safety_count(P, t,, t,) = E Safety(P, t)

t=1,

187

398 Y. TENG, D. DEMENTHON & L. DAVIS
' Propagated
N | value=20
~ '“
~
t 0
0
4 1
1 Not reachable at)
Propagated P 13 time t-2, no value
value =23 ‘ 1s propagated.
Traversal cost: 3 Traversal cost: 2
W P ' E
\ A N \
\ ' N \
t 0 t 1 27 t
1 t-1 2
1 t-2 0
3
t-3 21
Safety Path credit Safety Path credit
Propagated
S [|value=27
~
~
t 1
t-1
t-2 0
t-3 25
4

Safety Path credit

Fig. 1. Construction of the path credit table with the consideration of terrain traversability. For each
neighbor of P, the propagated value is the sum of all values shown in the two-column table associated with

each cell.

See Fig. 1 for an illustration of this formula, in which four directions are considered
for traversing through a cell. One way to interpret this formula is that each grid cell
propagates delayed path credits to its neighbors. Each path credit is delayed by an
amount of time equal to the traversal cost before it is propagated to the corresponding
neighbor and updated with safety information during the delayed period. After
receiving the path credits from its neighbors, each cell determines its new path credit
by choosing the maximum among the received values and its own previous credit
which is also updated by adding the current safety to it.

188

TERRAIN NAVIGATION PATH PLANNING 399

Clearly, Path_credit(P, t) > 0 if and only if cell P can be reached from the initial
location at time ¢. Thus, the subgoal is chosen only from cells with path credit greater
than zero at the end of the interval. After the subgoal is chosen, the path can be
extracted from the path credit table by a gradient-following method, or more
efficiently, by storing a pointer for each element to the previous cell along the best
path during the construction of the table and tracing these pointers back to the initial
location.

The following algorithm summarizes the subplanning process for a single agent:

Algorithm: subplanning procéss for a single agent
begin
for every terrain grid cell P
begin
if P is the initial location of the agent then |
Path_credit(P, 0) = 1;
else
Path_credit(P, 0) = 0;
end if
for 1 = 0 to end_of_subplan_interval do
begin
update Path_credit(P, t) by the recurrence formula;
Prev(P, t) = the pointer to the cell that contributes to the value of
Path_credit(P, t),

'

end for
end for every
choose a subgoal;
Path(end_of_subplan_interval) = the subgoal position;
for t = end_of_subplan_interval to 1 do
Path(t — 1) = Prev(Path(t), t);
end Algorithm

2.2. Subplanning for a Group of Agents

Now we extend the method to plan a path for a group of agents so that they
can maintain a given configuration and optimize their safety and mutual visibility
during their movement. In our problem, the agents in a group are required to maintain
their configuration as a line segment perpendicular to their direction of motion. A line
segment can be represented by the location of its center point and its orientation. With
the additional time-axis, the dimensionality of the solution space is four. Our
framework can be applied directly in this four-dimensional search space, but it is more
efficient to make a further reduction of the dimensionality by applying a decomposi-
tion.

First we represent the locations of the agents by the center of the segment, and find
a good path for the center, where ‘‘good’’ means a high likelihood that a segment

189

400) Y. TENG, D. DEMENTHON & L. DAVIS

centered at this cell will be safe and intervisible, no matter what orientation the
segment is in. This path is actually a corridor for the segment, and the agents are
allocated within the corridor using some simple heuristics. Since the corridor has.a
statistically good evaluation for all the constraints, we should be able to find an
acceptable allocation easily. Therefore, we can apply the subplanning method for a
single agent to the subplanning for the group center by propagatmg a path credit
defined on both safety and intervisibility.

For a cell to be a potential group center, safety is modeled as the number of safe
cells within a circle centered at the cell with a diameter equal to the segment length.
This information has to be computed for each' temporal sample. For efficiency on
regular grids, the circle is approximated by the circumscribing square.

Intervisibility is measured by sampling several line segments centered at a grid cell,
and counting the number of pairs of cells that can see each other along these line
segments. It needs to be computed only once due to its invariance with time. Currently
we sample the horizontal, vertical, and the two diagonal segments to take advantage of
the local communication links of the regular grids so that the computation can be done
on the terrain efficiently. The intervisibility on each line segment is computed by
pipelining the sequential version of the line-visibility algorithm (see Sec. 3.1.).

A weighted sum of safety and intervisibility determines the point credit of a cell to
be the group center. A threshold on point credit determines the goodness of a cell as a
path point, and the path credit is defined as the number of good path points along the
best path. The path credit table is constructed the same way as in the case for a single
agent. After the path is found, the orientations of the segments are determined by first
setting them to the ones perpendicular to the moving direction, and then smoothing
them to avoid large change between consecutive samples.

2.3. Choosing the Subgoal

The choice of a subgoal depends upon the specific mission in each problem
instance. In the bounding overwatch case, the following criteria are considered:

1. Reachability: it must be reachable at the end of the subplan interval;

2. Configuration: its location should be ahead of the current observer by an adequate
distance and within a corridor predetermined for the entire movement so that the
bounding overwatch pattern can be maintained;

3. Path quality: it should be reachable by a path that is good in terms of safety and
intervisibility;

4. Future safety: it should be safe for the next subplan interval;

5. Observability: it should have good observation points in its vicinity for monitoring
the movement of the adversaries in the next stage.

The reachability and configuration criteria are satisfied by considering only cells
with path credit greater than zero and ahead of the observers by about half of the
maximum distance the agents can travel in a subplan interval. Path quality is evaluated
by the path credit table. The future safety and observability criteria require computa-
tion of visibility from these candidate cells to the predicted trajectories of the

190

TERRAIN NAVIGATION PATH PLANNING 401

adversaries in the next stage. As the model of the adversary movements degrades with
" time, the possible trajectories of the adversaries usually span a fairly large region.
n Since the visibility computation is expensive and these candidate cells usually cluster
in regions, a region-to-region visibility analysis algorithm was developed’ to achieve
much faster computation than applying the point-to-region visibility analysis to each
' candidate cell. This algorithm is briefly described in the next section. After these
computations, the subgoal is chosen from the candidate cells by combining all the
criteria using a weighted sum and/or thresholds.

. 3. ALGORITHMS FOR VISIBILITY ANALYSIS

One of the fundamental computations in our planning system is the visibility
' analysis, which is also the most expensive computation in the system. Due to its
importance in computer graphics, navigation, engineering af)plications, and geo-
graphical information systems, various algorithms have been developed for computing
visibility from a given viewing point®~'%; however, previous visibility analysis from a
region or a set of points has been done only by applying to every point an algorithm
for a single point.'!® In this section, we describe the algonthms we used for the
three visibility analyses in our planning system: the line-visibility analysis, the
point-to-region visibility analysis (PRVA), and the region-to-region visibility analysis
(RRVA). All algorithms are based on digital terrain models and are designed for data
parallel hypercube machines. Hypercube machines provide the flexibility to embed a
mesh-connected array of any dimension and the efficiency to perform parallel prefix
operations along any axis of the array in logarithmic time. These advantages are used
extensively in these algorithms; this kind of parallel prefix operations will be referred
to as scan operations.

3.1. Visibility Along a Line

Visibility between two points is defined by drawing a line between the two points.
The two points are visible to each other if and only if the line lies completely above
the terrain. The basic parallel algorithm for visibility analysis is to compute the
visibility w.r.t. a given viewing point for every grid cell along a line on the plane
projection of the terrain. Suppose we have a list of processing elements (PEs)
representing this line. Each of them contains the elevation of the corresponding grid
cell on the line with the first cell as the viewing point. The visibility of each grid cell
from the viewing point can be determined by first computing the elevation angle from
the viewing point to each cell and then comparing the angle with the maximal angle
among all cells closer to the viewing point. If its angle is greater than the maximal
angle among the cells before it, then this cell is visible. The steps are illustrated in
Fig. 2. The total complexity is dominated by the computation of the maximal angle
before each cell, which can be done by a scan operation in O(log W) time on a
hypercube machine using W processors, where W is the number of grid cells along the
line.

191

1402 Y. TENG, D. DEMENTHON & L. DAVIS
, . A Viewpoint
" Elevation ‘p\ - _
"y s N~ S
()
*»

Tangent of the
elevation angle
from the viewpoint

' —
N " ‘
) Running max of
. the tangent value '
: o
Visibility along)
the line 1
‘ Y —
Distance

Fig. 2. Computing visibility along a line. The X-axis represents the horizontal distance from the viewpoint.
The effect of the middle hill is shown by the dashed line in the elevation plot.

3.2. Point-to-Region Visibility Analysis

The PRVA algorithm computes the visibility from a viewing point to a region. The
algorithm we use is based on that in Ref. 8, which was further developed in Ref. 1.
Since the underlying terrain is represented by an array of processors, each correspond-
ing to a grid cell of the terrain, the result is returned as a visibility map by indicating
the visibility of each grid cell with a flag in the associated PE. For computational
efficiency, the region is assumeq to be an upright rectangle. For a region of arbitrary
shape, we may obtain the maximal and minimal X and Y coordinates of the region and
use the circumscribing upright rectangle.

We use the term ray to refer to a line segment with a direction on the plane
projection of a terrain geographically, while it refers to a list of PEs computationally.
The processor structure respresenting a set of rays is called a ray structure. We define
a far side as a side of the rectangle such that when drawing a line from the viewing
point to any non-end point on that side, the line will pass through the interior of the
rectangle. The minimal set of lines covering all grid cells in a rectangular box will be
the lines from the viewing point to all grid points on the far sides. Therefore the
PRVA can be done by constructing a ray structure for each far side of the rectangle
and running the line-visibility algorithm for each ray in the ray structures.

192

TERRAIN NAVIGATION PATH PLANNING 403

Let L be the length of a side of the rectangle, and W be the maximal number of grid

cells on a single ray to this far side. An L X W 2-D array of processors is allocated

n for the ray structure, as shown in Fig. 3. Each row in the ray structure corresponds to

a ray. After broadcasting the coordinates of the viewing point and the end points of

the far side, each processor can find its corresponding grid cell by the digital

differential analyzer (DDA) technique,'* and thus obtain the elevation data. The

line-visibility algorithm is then conducted along all rays simultaneously. The result

will be sent back to its corresponding grid cell. If several results are sent back to the
same grid cell, they are combined by an OR operation.

The complexity of this parallel algorithm is

O(LW logW + LW X Comm) operations
with minimal time ‘
‘ O(logW + Comm)

using L X W processors, where Comm stands for the complexity for a global
communication.

As we can see from Fig. 3, many PEs in different rays may be mapped to the same
terrain cell. Thus concurrent reads/writes occur in the global communication between
the two processor structures. An improvement can be made to eliminate the concurrent
reads/writes. It can be shown that all PEs that are mapped to the same terrain cell
have the same element index and consecutive ray indices. Using this coherence

Viewing Points on
point the far side

{ {

Ray ¢ L { [| =~=---
index | [| | | ---=-<
O. 1 Ir17T1 7T -——---
LDy FTT—"—""
—...._>
Element index (0 .. W-1)
(@) (b)

Fig. 3. Ray and ray structure. (a) The rays are shown by line segments between the viewing point V and
side a of the rectangle. The ray structure consists of all rays for this side and is mapped to a triangle on the
terrain map. Note that only side a and b are far sides. (b) A 2-D array is allocated as the ray structure.

193

404 Y. TENG, D. DEMENTHON & L. DAVIS

property, the PEs can'be grouped by the terrain cell they are mapped to, and only one

‘from each group will participate in the global communication. In each group, the data

" oan be distributed to or combined from every member by segmented scan operations.

e As this operation is conducted along the dimension of size L, and we expect L to be
O(W), it will not increase the complexity.

3.3. Region-to-Region Visibility Analysis

The region-to-region visibility analysis (RRVA) problem is defined as follows: given
a source region S and a destination region D on a terrain, compute a measure of
' visibility from the region S to the region D. In terms of discretized geometry, this
problem can be restated as computing for every point in S the number of visible points
in D. In the RRVA algorithm, both the source and the destination regions are assumed
' to be upright rectangles, but they can be in any relationship, e.g. they can be
overlapping or even identical. From the previous subsection, there apparently exists a
brute-force solution by applying the PRVA to each grid cell in the source region. The
! complexity of this brute-force algorithm is O(LZLpW logW + LZLp,W X Comm)
operations, using up to L%L,W processors, where Lg and L are the linear size of the
source and the destination respectively. Judging from usual problem sizes, no existing
machines can provide this number of processors. Even if such a machine existed, the
number of concurrent reads would make this algorithm virtually implausible. There-
fore, we have to stage the analysis in several iterations, each of which computes a
subproblem of the entire analysis. Since the communication may be duplicated among
iterations, we identify some important coherence properties and explain how they can

be used to improve the efficiency of communication.

One important coherence property is depicted in Fig. 4, which shows that the ray
from the source point (x,, y;) to the destination point (x4, y4) is enclosed by the
triangle formed by the rays from (x; — 1, y,) and (x; — 1, y, + 1) to the same
destination point.? The two rays are referred to as the parent and the guardian
respectively, as shown in the figure. Furthermore, the vertical width of the triangle
formed by the parent and the guardian is always less than 1 from x, to x,. If the
visibility analysis is conducted for a column of the source at a time, and sweeps from
left to right using the same ray structure, then the PEs in this ray should be able to
obtain the elevation data of the corresponding terrain cells from one of the two rays
for the previous column using only local communications within the ray structure.

This observation suggests the idea of a sweeping algorithm, which sweeps across
the source horizontally and/or vertically. Since the above property holds only when the
emitting angle, B in the figure, is no more than 45 degrees, a partition is defined to
divide the rays into four sweeps, namely the East, West, North, and South sweeps, SO

. that the emitting angle angle is always no more than 45 degrees. In each sweep, the
analysis is conducted strip by strip, each being a row or a column of cells that is

“ For a better mapping between the geometry in the figures and the ordering in the data structure, a screen
coordinate system is adopted in all figures, i.e. the origin is in the upper left corner and the Y-coordinates
increase downward.

194

TERRAIN NAVIGATION PATH PLANNING 405

D (xd,yd)

Parent __

) \Guardian
Xs /
S '
/ B ‘
ys |2 ‘ _—
yst1] ¢ Sweeping Direction

\

Fig. 4. An observation on the coherence property.

perpendicular to the sweeping direction. The elevation data are obtained by global
communication only for the first strip of each sweep and are passed within the ray
structure for the subsequent strips. It can be proved that a ray, its parent, and its
guardian belong to the same sweep if they exist. In order to ensure the existence of the
guardian for all rays, it may be necessary to extend the source region by the side
length along the sweeping direction minus one, and to start . the sweep with the
extended initial strip. Figure 5 shows one such situation. Using these properties, the
algorithm is outlined as follows:

Algorithm PRVA
begin
for all grid cells in the source region
set visible-count to 0;
for each sweep if it is necessary
construct the 3-D ray structure;
for all PEs in the ray structure
compute the corresponding grid cell on the terrain for the initial strip;
get the elevation data from the terrain map for the initial strip;
for each strip
compute the visibility along each ray;
combine the result in the ray structure;
update the ray structure for the next strip;
end for each strip
send the result back to the source cells on the terrains;
end for each sweep
end Algorithm

195

406 Y. TENG, D. DEMENTHON & L. DAVIS
[t
i Parent
.
: S Guardian .
|
= - D
' i East sweep
-
e] o7
1 r-
1 l l -]
. Ll | v 1
11
S aad
1 '

Fig. 5. Extended source: thick dashed lines show the extended initial strip, while the thin dashed lines show
/ how the strip shrinks during the sweep.

Visible-count is the memory location in each terrain cell that returns the number of
visible destination cells. The algorithm consists of three major parts:

1. Construction of the ray structure

The ray structure contains all rays from each source cell on the (possibly extended)
initial strip to every grid cell along the far sides of the destination that belongs to
the sweep. Since a ray actually contains a list of processors, the entire ray structure
is a 3-D array of processors, which is indexed by three indices, as shown in Fig. 6:
u is the index for the grid cells along the strip in the source region, v is the index
for the grid cells along the far sides of the destination region, and w is the index of
grid cells along the ray.
When the value of one index is fixed, the other two indices specify a 2-D slice of
the structure. For example, a v-w slice refers to the 2-D array for a fixed value of
u. It corresponds to all rays starting at the same source point and is actually a part
of the 2-D ray structure for the PRVA of that source point. We also use the terms
u-neighbors, v-neighbors, and w-neighbors to specify the neighboring elements
along each axis.

2. Obtaining the elevation data for the initial strip .
For each PE in the ray structure, its corresponding grid cell on the terrain can be
computed in a way similar to that in the PRVA, and the elevation data can then be
obtained by global communication. The grouping technique in our PRVA algorithm
is applied to alleviate the congestion from concurrent reads. However, it cannot be
eliminated completely: in the worst case, the number of concurrent reads is reduced
to the range of u.

196

TERRAIN NAVIGATION PATH PLANNING 407

f==——-

(a) ‘ ()

Fig. 6. The ray structure for RRVA: (a) the relevant elements on the terrain map; (b) a 3-D array of
processors is allocated as the ray structure.

3. Strip-wise iterations :
The visibility analysis is conducted along all rays in parallel in the beginning of the
loop. The results are combined into a count of visible destinations cells for each
source cell on the strip. Special care should be taken in combining these results to
avoid duplicated counting. This count is stored in the first active PE of the first
active ray for each source cell. The ray structure is then updated for the analysis of
the next strip. The steps are shown below:

Updating the ray structure for the next strip
begin
de-activate the first active u-v slice;
for all active PEs in the ray structure _
change the starting point of each ray to the next grid point
along the sweeping direction;
compute the new corresponding terrain cell,
if it is different from the previous one
if there is a u-neighbor previously corresponding to this terrain cell
then
get the elevation data from this u-neighbor;
else
de-activate the entire ray the PE is in;
end if
end for all)
de-activate rays which have emitting angles greater than 45-degrees;
end

197

408 ‘ Y. TENG, D. DEMENTHON & L. DAVIS

After the iterations, the counts of visible destination cells stored in the ray structure
are sent back to the source cell on the terrain and are added to the results fromother
sweeps. It is an exclusive write operation since only one PE in the ray structure was
designated to keep the count for each source cell and only these PEs will participate in
this communication.

The resulting complexity is

O(L3LpW logW + LsLpW X Comm, ey + L% X Comm,,;.) operations

with a minimal '

‘ O(Ls logW + Com)nw,,-,e + Comm,.,y) time ,

using up to kLsLpW processors, where k is a constant determined by the number of
far sides and the number of extended sources.

The bottleneck of the computation derives from global communications, and its
reduction is achieved in three ways: the number of occurrences of global communica-
tion operations is reduced to only two (one for read and one for write), the total
number of such operations is reduced by a factor of Lg, and the congestion due to
concurrent read/write operations is minimized. The computation part is the same as the
PRVA algorithm, since the same number of rays are allocated for each point and the
computation along each ray remains the same.

An example of timing results showing the improvements due to the reduction in
communication complexity is given in Table 1. This experiment was done on a

Table 1. Reduction on communication radio.
Time PRVA PRVA RRVA
in seconds ‘ : w/copy
Total time 68.46 36.43 11.89
Global read time 49.74 15.90 3.38
Read/Total 73% 44% _ 28%
Copying time 0.79 0.05

Connection Machine CM-2 with 16K processors. The size of the source is 16 X 16,
and the destination is 64 X 64. The maximal number of grid cells along a ray is 256.
The first column shows the time consumed by applying the PRVA algorithm point by
point without any reduction of global communication. The second column is the result
of applying PRVA with modifications in the communication that avoids concurrent
reads by copying data in the ray structure, and the third column gives the results of
our RRVA algorithm with virtual processor ratio of 64. It is clear that the ratio
between the communication time and the total running time is greatly reduced at a
very small price which is shown in the last row as the time of the copying operations.
More details and other experimental results can be found in Ref. 7.

198

TERRAIN NAVIGATION PATH PLANNING 409

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we present the results from our implementation of the algoritiims. .
All experiments were conducted on a Connection Machine CM-2 using 8K processors.
The terrain size is 512 X 512 grid cells, and the terrain cells are mapped to a
two-dimensional array of virtual processors.

Figure 7 illustrates an example of the planning algorithm, which consists of eight
subplans. Each subplan is illustrated by marks on the terrain map indicating the centers
of the groups, and the gray level in the background shows the elevation at each pixel:
brighter pixels are higher. The observer is indicated by an ‘“X’’, and the initial.
location of the group being planned is marked by a square with a dot in its center. The
curve connecting the square to a small white dot is the path planned for the center of
the group, and the small white dot at the end of the path indicates the subgoal
location. The large solid white square near the bottom of each figure shows the
location of the final goal. The adversary locations in the beginning of each subplan are
indicated by crosses, and the emanating curves illustrate their predicted trajectories. In
the figure for. the first stage, both groups are located at the same initial position.

After finding the path for the center, the locations of the two agents are determined
by the direction of motion and the spacing between agents. Figure 8 enlarges the
region around the path of the second stage and shows the configuration of the group as
line segments. The agents are located at the end points of each line segment. The
safety and intervisibility of each agent is indicated by the brightness and the shape of
the marks at the agent locations. A white dot means a path point at which the agent is
safe and visible to its partner. A black dot means a path point at which the agent is
neither safe nor visible to its partner. A white L indicates an agent location that is
safe but not visible to its partner, while a black L indicates an agent location that is
not safe but visible to its partner. '

The key computation in the selection of the subgoal is the region-to-region visibility
analysis. Figure 9 shows the regions considered in the region-to-region visibility
analysis in the third stage. The dark area around the moving agent is the region that
can be reached within this subplan interval. A set of candidate cells for the subgoal are
chosen from this region using the subgoal criteria except the future visbility. These
cells form the source region of the analysis, as indicated by the small set of white
points to the right of the observer (the ‘‘X’’ mark). The destination region is the
region spanned by the possible adversary trajectories of the next stage: a circumscrib-
ing upright rectangle is used. A subgoal is then chosen using the visibility information.
The visibility from the vicinity of the subgoal to the destination region is shown in
Fig. 10 by the white area, in which the subgoal is marked by a black square. The
experimental result shows that the planning system effectively returns a fairly good
path.

5. CONCLUSION

In this paper, we have proposed methods for solving visibility-based terrain path
planning problem for groups of vehicles using data parallel machines. Our discussion

199

410 Y. TENG, D. DEMENTHON & L. DAVIS

(© @

Fig. 7. The path of each stage.

200

iy
(0

TERRAIN NAVIGATION PATH PLANNING

411

(€:4)

Fig. 7. Cont’d.

201

()

412 ‘ Y. TENG, D. DEMENTHON & L. DAVIS

‘ Fig. 8. The configuration of the group and the actual location of each agent along the path of the second
stage.

@)

Fig. 9. The source and destination regions in the region-to-region visibility analysis of the third stage.

202

TERRAIN NAVIGATION PATH PLANNING 413

(@ (b)

Fig. 10. The visibility from the vicinity of the subgoal to the destination regions in the third stage.

focused on an instance of path planning problems in which two groups of vehicles
move in a bounding overwatch manner. Since this kind of problem is known to be
hard, our algorithms use approximations based on both temporal and spatial sampling.
Our method is an extension of the stealth terrain navigation approach used in Ref. 1.
However, the problems considered in Ref. 1 require only point-to-region visibility
analysis, while the bounding overwatch movement requires region-to-region visibility
analysis. A fast parallel algorithm has been developed to conduct this analysis with
reduced running time. The effectiveness of our planning system has been shown by
experiments.

ACKNOWLEDGEMENTS

The support of the Defense Advanced Research Projects Agency (DARPA Order
No. 6350) and the U.S. Army Engineer Topographic Laboratories under Contract
DACA76-88-C-0008 is gratefully acknowledged.

REFERENCES

1. Y. A. Teng, D. DeMenthon and L. S. Davis, ‘‘Stealth terrain navigation’’, Technical
Report CAR-TR-532, Center for Automation Research, University of Maryland, 1991; also
to appear in IEEE Trans. Syst. Man Cybern. 22, 6 (1992).

2. J. Canny, The Complexity of Robot Motion Planning, MIT Press, 1988.

3. J. Reif and M. Sharir, ‘‘Motion planning in the presence of moving obstacles’’, in Proc.
26th Symp. on Foundations of Computer Science, 1985, pp. 144—154.

4. J. S. B. Mitchell, “‘An algorithmic approach to some problems in terrain navigation’’,
Artif. Intell. 37 (1988) 171-201.

203

414 Y. TENG, D. DEMENTHON & L. DAVIS

5. M. B. Metea and J: J.-P. Tsai, ‘‘Route planning for intelligent autonomous land vehicles
using hierarchical terrain representation’’, in Proc. Int. Conf. on Robotics and Automation,
.. 1987, pp. 1946-1952.
" 6. W. Daniel Hillis, The Connection Machine, MIT Press, 1985.
7. Y. A. Teng, D. DeMenthon and L. S. Davis, “‘Region-to-region visibility analysis using
massively parallel hypercube machines’’, Technical Report CAR-TR-578, Center for
' Automation Research, University of Maryland, 1991. Also appears in Proc. 1991 Workshop
on Computer Architecture for Machine Perception, eds. B. Zavidovique and P. L. Wendel.
8. G. E. Blelloch and J. J. Little, ‘‘Parallel solution to geometric problems on the scan model
of computation’, in Proc. 1988 Int. Conf. on Parallel Processing, 1988, pp. 218—222.
9. R. Cole and M. Sharir, ““Visibility problems for polyhedral terrains’’, Symbolic Comput. 7
(1989) 11-30. ,
" 10. L. De Floriani, B. Falcidieno, C. Pienovi, D. Allen and G. Nagy, “‘A visibility-based
' model for terrain features”’, in Proc. Int. Symp. on Spatial Data Handling, 1986,
! pp. 235-250. '
11. D. M. Jung, ‘‘Comparisons of algorithms for terrain visbility”’, Master’s thesis, Rensselaer
Polytechnic Institute, Troy, New York, 1989.
12. J. Reif and S. Sen, ‘“‘An efficient output-sensitive hidden-surface removal algorithm and its
parallelization’’, in Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 193—
200. . ‘
. 13. K. Mills, “‘A pilot study of intervisibility analysis on the connection machine’’, Parallel
' Comput. News 4, 3 (1991) 4-7, Northeast Parallel Architecture Center at Syracuse
University.
14. D. Hearn and M. P. Baker, Computer Graphics, Prentice-Hall, 1986.

Received 15 June 1991; revised 20 December 1991.

Daniel DeMenthon re-
ceived a graduate en-
gineering degree from
Ecole Centrale de Lyon,
France, the M.S. degree in
applied mathematics from
Université Claude Bernard,
France, and the M.S. de-
University of Maryland gree in engineering from

and was awarded the De- the University of Califor-
partmental Graduate Fellow in 1992. Since 1989, nia at Berkeley. He is completing a Ph.D. course

Y. Ansel Teng received
the B.S. degree in electri-
cal engineering from
National Taiwan Universi-
ty, Taipei, in 1986. He is
currently a doctoral candi-
date in the Department of
Computer Science at the

he has been a Research Assistant in the Center for in computer science with Université Joseph

Automation Research at UMD. His research in- Fourier, Grenoble, France. For the past seven years

terests include terrain navigation, parallel proces- he has been a senior research engineer at the

sing, geographical data processing, computational Computer Vision Laboratory of the Center for

geometry, and visualization. Mr. Teng is a student Automation Research at the University of Mary- ‘

member of the Association for Computing land, College Park. His research interests are in the

Machinery. areas of object recognition, planning, and 3-D user
interfaces. .

204

TERRAIN NAVIGATION PATH PLANNING

415

Larfy S. Davis is a ten-
ured Professor in the De-
partment of Computer Sci-
ence and the Director of
the University of Maryland
Institute for Advanced
Computer Studies. He re-
ceived his Ph.D. in 1976
from the University of
Maryland, College Park in
computer science. Prof. Davis has published over
50 articles on topics in image processing and
computer vision. He is a member of the IEEE and
is on the editorial board of both Computer Vision,
Graphics, and Image Processing and the Interna-
tional Journal of Computer Vision. He is Program
Co-chair of the upcoming workshop *‘Computer
Architectures for Machine Perception (CAMP)
93,

205

