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Stealth Terrain Navigation

Y. Ansel Teng, Daniel DeMenthon, and Larry S. Davis, Member, IEEE

Abstract— A method for solving visibility-based terrain path
planning problems using massively parallel hypercube machines
. is proposed. A typical example is to find a path that is hidden from
moving adversaries. This kind of problem can be generalized
as a time-varying constrained path planning problem, and is
proven to be computationally hard. The method we propose is
an approximation based on both temporal and spatial sampling.
Since a 2-D grid cell representation of terrain can be embedded
into a hypercube with extra links for fast communication, our
method can be very efficient when implemented on hypercube
machines. The time complexity is in general O(T x F x log N)
using O(N) processors, where T is the number of temporal
samples, E is the number of adversary agents, and N is the
number of grid cells on the terrain. It is also shown that the
method can be applied to several realistic problems with a variety
of path optimizations. All algorithms have beén implemented on
the Connection Machine CM-2 and results of experiments are
presented.

I. INTRODUCTION

HIS paper describes a method for solving visibility-

based path planning problems over natural terrain using
massively parallel hypercube machines. These problems arise
in the development of both autonomous and teleoperated sys-
tems for vehicle navigation in a battlefield scenario. Generally
speaking, this kind of problem is an instance of path planning
on a 2-D space with time-varying constraints. It is well-known
that path planning with moving obstacles is computationally
hard [26]. However, visibility constraints are potentially harder
than obstacle constraints because their sizes and distributions
can change in time with little coherence. Furthermore, the
analysis of visibility requires intensive computation. So our
problem is potentially harder than path planning under moving
obstacle constraints. However, by transforming these problems
to a discretized formalism, many basic computations can be
arranged in a regular pattern, and thus can be done in paral-
lel efficiently. This motivated our attempt to explore digital
approximation techniques on a massively parallel machine to
solve these problems.

II. PREVIOUS WORK

Path planning is studied extensively in robotics. Previous re-
lated work can be classified into three categories: path planning
with moving obstacles, path planning for terrain navigation,
and visibility analysis on terrain. Our work combines these
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results with digital approximation techniques on a powerful
parallel machine so that we can solve realistic problems in an
acceptable amount of time.

A. Path Planning with Moving Obstacles

Reif and Sharir [26] showed that path planning in the
presence of moving obstacles is generally hard. Among their
results, they provided a polynomial time algorithm for the 2-D
asteroid avoidance problem for a bounded number of obstacles.
To be more precise, their algorithm runs in O(n2*+2)k) time,
where n is the total number of vertices and edges of the
obstacles, and k is the number of obstacles, which is assumed
constant. Clearly, if the number of obstacles is not bounded,
this algorithm will have an exponeéntial complexity. Later
Canny [5] proved that this problem is NP-hard.

Although this. problem has been proved to be hard, it
is nevertheless a very important -problem. Researchers have
developed algorithms to plan the best path under different
assumptions and approximations. One early practical algorithm
was proposed by Kant and Zucker [17], using a path-velocity
decomposition approach that first finds a minimum length path
among the static obstacles, and then determines the speed
along the path to avoid collision with the moving obstacles.
Later they incorporated another low-level mechanism called
a local avoidance strategy [18] so that the robot can modify
the path to deal with unexpected changes of movement of the
obstacles. By this decomposition, they reduced the complexity
of the problem by reducing the dimension of the search space.
However, they also restricted the possible solutions to be
within that reduced space. This is the common drawback of
all practical algorithms.

Erdmann and Lozano-Perez [11] worked on a more general
problem: planning the motion of multiple moving objects
among several stationary obstacles. They took a prioritized
approach that assigns a priority to each moving object and
plans the motion of one object at a time, with the order
determined by the priority. When the planner plans the path for
an object, it has to take into consideration both the stationary
obstacles and the moving objects that have already been’
planned for. This problem is considered to be more general
in the sense that planning a path among both stationary and
moving obstacles can be treated as planning a path for the
lowest priority object, which must take the responsibility of
avoiding collision with all other objects. They represented the
moving obstacles in space-time by a set of slices. Each slice
is the configuration space at the time when some obstacle
changes its velocity, so all obstacles move at constant velocity
between any two consecutive slices. The planner will return a
piecewise linear path in which each segment connects two
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consecutive slices. The time complexity of the algorithm
is O(rn®), where n is the total number of edges in the
environment, and r is the number of slices constructed. There
is a trade-off between the complexity and the quality of the
path. If r is small, the complexity is low, but the returned
path can be very poor in that the robot is able to change its
velocity only occasionally, or may even fail to find a collision-
free path. This can be improved by adding extra configuration
space slices between the existing ones, but at the price of
increased complexity.

An important tool for path planning among static obstacles
is the visibility graph [19], [20]. Fujimura and Samet [12],
[14] generalized this to the accessibility graph, on which
they developed an algorithm for planning a time-minimal path
among moving obstacles under the assumption that the robot
can move faster than any obstacle in the environment.

Tychonievich and others proposed a maneuvering-board
approach for path planning with moving obstacles [29], [31].
They used a geometric constraint-based reasoning methodol-
ogy for obstacle avoidance. One advantage of this method
is the ability to incorporate other navigation constraints into
a uniform geometric representation. Their planner will return
a series of linear local paths toward the final goal. This is
suitable for nautical navigation because the direction of motion
does not change frequently in such cases. However, in terrain
navigation, change of direction is common, and is quite natural
for minimizing energy consumption, so a good planner should
be able to take advantage of this property and find a better path.
In their method, if the constraints cannot be fully satisfied
simultaneously, they take a hierarchical approach in which
constraints have different priorities.

Discretized approximation is another dimension for practical
algorithms. Fujimura and Samet [13] also designed an algo-
rithm using A* search on a nonuniformly discretized space-
time search space. Their discretization, which they called
“spatial indexing,” is based on an octree representation. Their
algorithm features the ability to plan a path under a predeter-
mined range of velocities, accelerations, and centrifugal forces,
with the restrictions that the robot can change its acceleration
only at the discretized points and that acceleration takes on
discrete values.

B. Path Planning on Terrain

Mitchell explored algorithmic approaches to several terrain
navigation problems. His work is summarized in [22]. The
major problems discussed are the (static) obstacle avoidance
problem, the discrete geodesic problem, and the weighted
region problem. All of these problems can be characterized as
finding an optimal path with different weighting schemes over
the terrain. He worked on both digital terrain models (DTM’s)
and polyhedral terrain models, but mostly on the latter. The
most important idea in his approach is building a shortest path
map by using a continuous version of Dijkstra’s shortest path
algorithm [8). A shortest path map is a subdivision of the
plane into regions each of which is the locus of all goal points
whose shortest paths from the source have the same topology
(e.g., passing through the same sequence of obstacle vertices,
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in the obstacle avoidance case). This continuous Dijkstra
algorithm simulates the propagation of a wavefront from the
source, in much the same way that expansion operates in the
Dijkstra or A* algorithm. He also discussed the extension of
the weighted region problem to the maximum concealment
problem arid the least-risk watchman route problem, which
are visibility-based problems in a static environment, with
the visibility defined loosely by detecting the existence of a
“mountain range” between the adversary and the region being
analyzed. What we need for our problem is an integration
of the weighted region problem and the geodesic problem in
a time-varying environment with more accurate analysis of
visibility. This is probably beyond what can be accomplished
using polyhedral models presently, and justifies the digital
approximation approach.

Bitz and Kung [1] proposed an algorithm for planning a
least-cost path on DTM with known traversal cost associated
with each grid cell. The algorithm applies the dynamic pro-
gramming technique and accesses the terrain information in
a highly regular way. They implemented their algorithm for
the least-cost path from a single source to all other points on
the Warp computer. The worst-case running time is O(n*/k),
using k(k < n) processors for a map of size n X n.

Metea and Tsai {21] proposed a path planning algorithm for
a combat engagement scenario, which considers the traversal
cost and the threat from the adversary on each grid cell and
assigns an undesirability factor to each cell. Their algorithm
optimizes the global route by using a dynamic programming
technique and a hierarchical representation of terrain. Their
representation of terrain is similar to the quadtree, but with a
10 x 10 division on each cell. Sensors are used to update the
knowledge about the environment, and a rule-based production
system is incorporated to modify the plan during navigation.
They implemented their algorithm on a Vax 11/780 and they
also discussed the parallelization of the algorithm.

Dorst and Trovato [10] developed an algorithm for optimal
path planning by cost wave propagation in a discretized metric
configuration space. A similar scheme for finding collision-free
paths among obstacles can be found in [33]. Although they
were dealing with static obstacles in an artificial environment,
their concept can be adapted to deal with moving obstacles
and terrain. For example, the metric can be interpreted as the
traversal cost between terrain grid cells, and the 2-D space can
be extended to space-time to deal with moving obstacles.

C. Visibility Analysis on Terrain

Visibility analysis is a fundamental problem in computer
graphics for removing hidden lines and hidden surfaces from
the display. A taxonomy of various algorithms can be found in
[30]. Although any 3-D object-space hidden surface algorithm
can be used for visibility analysis on terrain, it will not be
very efficient since the algorithm does not use the fact that a
terrain is considered as a special 2%-D space that can only be
viewed from above the surface.

Algorithms specially designed for terrain visibility anal-
ysis can be categorized by the underlying terrain models.
In polyhedral terrain models, Jung [16] made a comparison



98 ’ IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 1, JANUARY/FEBRUARY 1993

between three different algorithms, namely the angular-sweep
algorithm, the edge-sorting algorithm, and the triangle-sorting
algorithm. A parallel algorithm is proposed by Reif and Sen
[25], which runs in time O(log®(n + k)) using O({n +
k)/log(n + k)) processors in a CREW PRAM model, where
n and k are, respectively, the input and output sizes.

Sharir [28] proposed an O(n log® n) algorithm for comput-
ing the shortest watchtower that can observe the entire terrain.
Cole and Shafir further investigated several aspects of terrain
visibility in [6], including the problem of locating a set of
observation points that jointly their visibility can cover the
entire terrain. They showed that in the case of a single point, its
existence and location can be determined in O(nlogn) time,
but finding a minimal set of points for this task is NP-hard.

In digital terrain models, terrain is represented by elevation
data in regular grids. Due to the regularity of the structure,
practical parallel algorithms are encouraged by the advent of
massively paraliel machines with limited degree of regular
connections. For example, Blelloch [2] implemented a visibil-
ity algorithm with his scan operation model on the Connection
Machine CM-2. We adopted his algorithm in our project; it
will be explained in detail later.

Dehne and Phiam [7] proposed a visibility algorithm for
binary images on hypercube or perfect-shuffle computers.
They use a special data structure called a sector tree so
that paraliel prefix operations can be applied efficiently. The
algorithm runs in O(log”n) for an n x n image once the
structure is built. However, the mapping between the image
pixels and the sector tree is not discussed; it may involve
some extra communication time.

III. BASIC EXAMPLE: PLANNING A SAFE PATH
ON DIGITAL TERRAIN

A. Problem Definition

Given a digital terrain map with elevation data at each grid
cell, and information about a friendly agent and adversary
agents moving on the ground, we want to find a path for the
friendly agent from its current position to a final goal such
that the movement of the friendly agent is hidden from the
adversaries by taking advantage of the terrain. We refer to this
property as safety in the following discussion.

The information about the friendly agent includes its current
position, the final goal location, and its maximal speed. In
this example, speed is determined by considering only the
Euclidean distance on the X-Y plane. The information about
each adversary agent includes its current position and its
predicted motion trajectory. We assume the movements of the
adversaries are not affected by the movement of the friendly
agent since it is hidden from them.

Although we are able to plan a complete path at once, the
feasibility of such a path is questionable due to the uncertainty
of the prediction about the motion of the adversaries. Thus
our approach is to determine a time interval over which we
are fairly sure of the motion of the adversaries, and make a
subplan for that interval to a subgoal. The subgoal is chosen
to be closer to the final goal and to have good observability

in its vicinity, from which the activities of the adversaries
can be observed to update the iriformation about their motion.
Then this subplan process is iterated until the agent reaches
the final goal. Thus two important time factors are defined for
each subplan:

1) subplan interval—the interval of time we are planning
for in each subplan;

2) thinking time—the time required to generate a subplan.
Since our plan is time-dependent; we have to know when
the agent can start moving. We regard the thinking time

" as a constant known at the beginning of the subplan,
which will be justified later by the complexity of our
algorithm.

The criteria for a subgoal are as follows.

1) It is safe at the end of the subplan interval (and prefer-
ably remains safe for a certain period).

2) It must be reachable at the end of the subplan interval
through a safe path. '

3) It is closer to the goal.

4) It has good observation points in its vicinity.

So the complete path planning contains the following loop:
while the final goal is not reached
begin
evaluate each cell that can be reached in
one subplan interval;
choose a subgoal;
plan a path to the subgoal;
execute the subplan and update information;
end
Since the last step, the execution of the subplan, is not part
of the plannihg, the rest of this paper will focis on the first
three steps in the loop, namely the subplanning process.

B. Algorithms for Subplan

The first difficulty comes from the definition of safety.
As we mentioned in the introduction, it is very difficult to
represent the visibility map of a meving object analytically. So
we adopt a temporal-sampling approach, i.c., we determine a
sampling period in advance, compute the visibility maps only
once for each sampling period, and define safety by these
samples.

In order to determine the cells that can be safely reached in
one subplan interval, we make an incremental computation of
the safely-reachable region for each time step, denoted as RS;,
where ¢ is the time index. It is natural to set the length of one
time step as tlie length of a sampling petiod for computing the
safety map. The computation starts at the end of the thinking
time, where RSend_of_think_time iS initialized as the current
location of the friendly agent. For each time step, we compute
RS, by first expanding RS;_; according to its maximal speed,
and then curtailing it by the regions visible from the predicted
adversary positions at time t. See Fig. 1. After iterating this
process, ¢ is incremented to the end of the subplan interval,
and it is guaranteed that there is a safe path to any cell in the
region RSend of_interval- Cells in this region are evaluated by

‘the criteria mentioned in the previous subsection and the best

cell is chosen as the subgoal.
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Fig. 1. Building the RS structure incrementally by dilating and trimming.
In the visibility map, the shaded cells are visible to the adversaries.

The path from the starting point to the subgoal is extracted
from the RS structure backward in time. We start at the
subgoal in RSend_of_interval and dilate it according to the
speed constraint. The result defines the set of cells the agent
has to reach at one time step before the end of the subplan
interval if it is to reach the subgoal at the end of the interval.
Then we compute the intersection of this set and the RS
at that time. The result is a set of cells that can be on
our path. It is guaranteed that this set is nonempty by the
method employed to construct the RS structure. We have to
choose one cell from this set according to some goodness
measure; we currently choose the cell with the least distance
to the straight line between the last path point and the initial
location of the friendly agent, which tends to minimize the
path length. Then from the chosen path point we repeat the
dilation-intersection-selection procedure, until the time index
is decremented back to the end of the thinking time. Since
the current position is the only cell in the first RS region,
the path must terminate at the current location. The terms
forward dilation and backward dilation denote, respectively,
the processes of the construction of the RS structure and the
extraction of the path. The subplanning process is summarized
in this algorithm:

Algorithm Subplan

begin
{Step 1: Finding the safely-reachable region by forward
dilation}
RSend_of_think_time = the current position of the friendly
agent;

for ¢ from the end of the thinking time to the end of the
subplan interval
begin

RSt = dilate(RSt_l);
Predict the adversary positions at this moment;
Analyze the visibility from the adversary agents to the
potentially reachable region;
RS; = RS, Nonvisible region;
end;
{Step 2: Choose a subgoal}
Evaluate cells in RSq; 4 of interval 20d choose the best one
as the subgoal;
{Step 3: finding the path by backward dilation}
PATHepd_ of_ interval = the position of the subgoal;
for ¢ from the end of the subplan interval back to the end
of the thinking time
begin :
PATH,; = dilate(PAT Hyy1);

PATH, = PATH; N RSy;
PATH, = best cel(PATH,);
end;
return(PATH);

end algorithm

Fig. 2 illustrates this algorithm in space-time. Although the
RS structure is constructed by dilation at the maximal speed of
the agent, this does not mean that the agent is always moving
at its maximal speed. A forward dilation of RS; computes the
region that can be reached at time t+1 from a point in RS; ata
speed bounded by maximal speed. Consequently, although the
path covers a time interval from the end of the thinking time
to the end of the subplan interval, the agent may not always be
moving during this interval, since the same terrain cell may be
chosen as the path points for several consecutive time steps. In
such cases, the agent would simply remain at that cell for the
corresponding interval: the cell can be the starting location,
the subgoal, or any intermediate point along the path.

Assume the terrain map is a square with a total of N grid
cells. In our implementation, a 2-D array of processors of
the same size is allocated to store the terrain map as well as
the RS structure. One processing element (PE) is assign to
each terrain cell. It stores the height information and all the
corresponding elements of the RS structure for that cell. Let
T be the number of sampling periods in one subplan interval,
i.e., the number of temporal samples considered in one subplan
interval, and E be the number of adversary agents. The time
complexity of this algorithm is O(T x E x VA) where VA
stands for the time complexity of one visibility analysis.

IV. ALGORITHM FOR VISIBILITY ANALYSIS

Visibility analysis requires intensive computation and is
used frequently during path planning. In fact, it dominates
the running time for the entire process. Our implementation
is based on the algorithm developed by Blelloch [2] using
hypercube machine models. Hypercube machines provide the
flexibility to embed a mesh-connected array of any dimension
and the efficiency to perform parallel prefix operations along
any axis of the array in logarithmic time. These advantages
will be used extensively in our algorithms; this kind of parallel
prefix operation will be referred to as a scan operation.
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Fig. 2. Finding a path through the RS corridor. (a) A perspective view.
The RS regions are shown by the shaded area on each time slice, with the
speed constraint shown by the angle 3. (b) A side view of this problem.
Thick vertical line segments show the RS regions and the dashed line is an
example of a valid path.

The visibility analysis algorithm computes the visible subre-
gion of a given region from a given viewing point. Therefore,
it is referred to as a point-to-region visibility analysis (PRVA)
algorithm. Since the underlying terrain is represented by an
array of processors, each corresponding to a grid cell of the
terrain, the result is returned as a visibility map by indicating
the visibility of each grid cell with a flag in the associated
PE. For computational efficiency, the region is assumed to
be an upright rectangle. For a region of arbitrary shape, we
may obtain the maximal and minimal X and Y coordinates
of the region and use the rectangular box determined by
these coordinates instead. On a hypercube machine, these
coordinates can be obtained in O(log N) time for a DTM
with N grid cells.

A. Visibility Along a Ray

A point is visible to a given viewing point if and only if
the line segment joining them in the three-dimensional space
lies completely above the terrain. The basic parallel algorithm
for visibility analysis is to compute the visibility w.r.t. a given
viewing point for every grid cell along a ray, where a ray
refers to a directed line segment on the X-Y plane. Suppose
we have a list of processing elements (PE’s) representing this
ray. Each of them contains the elevation of the corresponding
grid cell on the ray with the first cell as the viewing point.
The visibility of each grid cell from the viewing point can

Elevation

W

Tangent of the elevation angle from the viewpoint

Running max of the tangent value

Visibility along the ray

Distance

Fig. 3. Computing visibility along a ray. The X-axis represents the hori-
zontal distance from the viewpoint. The effect of the middle hill is shown
by the dashed line in the elevation plot. In practice, the tangent value of an
elevation angle is used instead of the elevation angle itself. Also the height
of the viewer is added to the elevation of the viewing point.

be determined by first computing the elevation angle from the
viewing point to each cell and then comparing its angle to the
running maximum, that is, the maximal angle among all cells
closer to the viewing point. A cell is visible if its elevation
angle is greater than the running maximum. These steps are
illustrated in Fig. 3.

The total complexity is dominated by the computation of
the running maximum that can be done by a scan operation in
O(log K) time on a hypercube machine using K processors,
where K is the number of grid cells along the ray.

B. Point-to-Region Visibility Analysis

The PRVA algorithm is based on the ray-visibility algorithm.
The idea is to find a minimal set of rays that covers all the grid
cells in the region, allocate a list of processing elements to each
ray, let each processor get the elevation of its corresponding
cell, then use the ray-visibility algorithm to determine the
visibility of each corresponding cell, and send back the result
to that grid cell on the terrain.

Here we define and clarify some terminology in our dis-
cussion. Geographically, we use the term ray to refer to a
directed line segment on the XY plane. It also refers to a list
of PE’s from the computational point of view. The processor
structure representing a set of rays is called a ray structure.
We do not distinguish between the two meanings of rays as
long as no ambiguity occurs. The same principle applies to
the terrain cells and points. In a DTM, terrain is actually a
tessellation of square cells in a regular grid pattern. Each cell
has a representing grid point in the center, indexed by the
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Fig. 4. The definition of far sides. Only side « and b are far sides because
the line segments from the viewing point 1" to them pass through the interior
of the region.

b

o Viewing point

. . b
Region of interest

Fig. 5. The test of far sides. Side « is a far side since the viewing point and
the region of interest lie on the same side of L, the line embedding side a,
while side d is not a far side since they are on different sides of A/.

X and Y coordinates. We usually use the term “point” to
emphasize a specific location and the term “cell” to imply a
piece of the tessellation with unit area. Computationally, both
terms refer to the PE assigned to that grid cell. Two processor
structures are used in the analysis: one for the terrain map
and the other for the ray structure. We usually refer to the
processors of the former as terrain cells and the latter as PE’s
of a ray or in a ray structure.

As mentioned above, we assume the region to be an upright
rectangle. We define a far side as a side of the rectangle such
that when drawing a line from the viewing point to any point
on that side, except the end points, the line will pass through
the interior of the rectangle. See Fig. 4. A useful property of
far sides is that the viewing point and the rectangle lie on the
same side of the line containing a far side. This property leads
to a good test for far sides. See Fig. 5. The minimal set of
rays covering all grid cells in a rectangular box will be the
rays from the viewing point to all grid points on the far sides.
Therefore the PRVA can be accomplished by constructing a
ray structure for each far side of the rectangle and running the
ray-visibility algorithm for each ray in the ray structure.
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(a)
Viewing point Points on the far side

Ray index
(0..L-1)

Element index (0 .. K-1)
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Fig. 6. Ray and ray structure. (a) A ray structure for side a is constructed:
the rays are shown by the line segments between the viewing point V' and
side a of the rectangle. The ray structure consists of all rays for this side. (b)
The ray structure is allocated as a 2-D array.

Let L be the length of a side of the rectangle, and K be
the maximal number of grid cells on a single ray to this far
side. An L x K 2-D array of processors is allocated for the
ray structure, as shown in Fig. 6. Each row in the ray structure
corresponds to a ray. A PE in the ray structure is identified by
its ray index and element index. Ray index ranges from 0 to
L — 1, indicating which ray the processor is on, while element
index ranges from O to K — 1, indicating its rank in its ray.
The key point in constructing the ray structure is to find the
corresponding grid cell in the terrain map for each processor
in the ray structure so that each processor can obtain the
corresponding height to perform the ray visibility algorithm.
The coordinates of the viewing point and the end points of the
far side are first broadcast to the entire ray structure. Using
the ray index, each processor can find the end point of its own
ray. Then, using the element index, each processor can find
its corresponding grid cell by the digital differential analyzer
(DDA) technique [15]. The time complexity for constructing
the ray structure is constant.

After construction of the ray structure, each processor
obtains the elevation information from its corresponding ter-
rain cell and the ray-visibility algorithm is conducted along
all rays simultaneously. The result will be sent back to its
corresponding grid cell. If several results are sent back to the
same grid cell, they are combined by an OR operation.

The time complexity is thus O(log K + Comm), using L x
K processors, where Comm stands for the complexity of the
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global communication to read the elevation data and write the
visibility flag. In the construction of the ray structure, since we
actually map a triangular area of the terrain into a rectangular
2-D array of processors, several processors in the ray structure
may be mapped to the same terrain cell. The closer to the

. viewing point, the more processors will be mapped to the
same cell. Thus numerous concurrent reads/writes occur in the
global communication between the two processor structures.
This does not only result in congestion in the communication
network but also create a long list of destination addresses in
the terrain cells near the viewing point such that it may run
out of the limited memory in each processor.

The solution is based on the observation that all PE’s
corresponding to the same terrain cell have the same element
index and consecutive ray indexes, as shown by an example
in Fig. 7. Using this property, concurrent reads/writes can be
eliminated by grouping the PE’s according to the terrain cell
they are mapped to and allowing only one PE from each group
to participate in the global communication. In each group, the
data can be distributed -to or combined from every member
by segmented scan operations. As this operation is conducted
along the dimension of size L, its complexity is O(log L).
The complexity of an exclusive read/write operation should
be no more than that of a permutation. In the worst case, a
permutation on an N-node hypercube can be performed in
O(log® N) time [4], while a randomized routing algorithm
can achieve an expected O(log N) complexity with high
probability [32]. Since both L and K are bounded by v/N,
the overall time complexity of the PRVA algorithm is thus
O(log N) expected with high probability.

V. THE PLANNING ALGORITHM AND ITS EXTENSIONS

In an attempt to provide a more general framework for
solving more complex path planning problems, we recast the
solution procedure in a more abstract framework. There are
two constraints in the previous example, namely reachability
and safety. Reachability can be generalized as motion con-
straints on the agent itself, and safety can be generalized
as constraints derived from the environment, which refer to
factors that will not change in response to our actions, e.g., the
terrain and the movements of the adversary agents. Therefore,
each slice of the RS structure can be interpreted as a qualified
region under these constraints.

Our planning algorithm is a variation of the dynamic
programming paradigm. It fills up a 3-D table, ie., the RS
structure, using values previous obtained in the table and
values from another precomputed 3-D table, i.e., the visibility
maps. It keeps the whole table for efficiency in finding the path
backward because the computation of the qualified region is
too expensive to be repeated. The key point that makes this
algorithm suitable for parallel processing is to represent all the
constraints in digital maps efficiently. The safety constraint
was discussed in the previous section. In this section, we first
discuss the motion constraint; then we show that we can solve
other path planning problems with appropriate modifications of
dilation and trimming to optimize over a variety of constraints.
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Fig. 7. Using scan operations for height information. (a) The coordinates
involved in this example. (b) The corresponding Y-coordinate for each
element of the ray structure. All elements in the same column have the same
X-coordinate, which is shown awt the top of each column. (c) The arrowed
lines show where the scan works.

A. Dilation

In our framework, the motion constraint is satisfied by a
process called dilation, which corresponds to the expansion of
a region by the maximal distance the agent can move in one
unit of time. Assume S is a set of points. The dilation of S
by radius r is defined as

" 8"={p|3¢g,9e SAPg< T}

The definition is concise, but it is hard to compute S™
from S on a digital map exactly due to quantization errors.
In our implementation, we use alternating four/eight-neighbor
propagation to approximate the dilation. Fig. 8 illustrates this
process. This method, also known as the octagonal distance
transformation, was proposed by Rosenfeld and Pfaltz [27]
for parallel computation of distance transformations. There
are some inevitable errors involved in this process, which
can accumulate through the iterations. The maximum error
of octagonal distance transformation w.r.t. Euclidean distance
transformation is about 15% [3]. Using more sophisticated ap-
proximation techniques can reduce this error, but at the price of
additional running time. Discussion of distance transformation
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[ |
@ ® ©

Fig. 8. An octagonal dilation with radius 2. (a) The region before dila-
tion is in black. (b) The region expanded by four-neighbor propagation is
shown by the cross-hatched cells. (c) The region expanded by the following
eight-neighbor propagation is shown by the stash-hatched cells.

and length estimation on digitized spaces can be found in 3},
9}, 23}

B. Finding a Relatively Safe Path Instead of an Absolutely
Safe Path

The example mentioned in Section III returns a safe path
if there is one. But it will return a null path if there is no
absolutely safe path. Also, it will sometimes make an awkward
choice of subgoal if all points in the direction of the final goal
are exposed to the adversaries at some moment, even if for
only one time step. If these situations occur, we would rather
have a path that is safe for most of its length and can lead us
to a good subgoal, than have nothing useful.

We formalize the previous example by using some standard
concepts from optimization theory [24]. Let

P(t) t € [to, tn]

be the path, which is the set of problem variables. For the
planning of an absolutely safe path, we maximize an objective
function

Q(P(tn))  tE€ [to,tn]
under the constraints
dP(t)
T Vmax
’ a |

and
Safety(P(t)) =1

for all t € [to,ts]. Note that the objective function Q()
depends only on the subgoal, ie., P(t,) in our previous
example.

To realize a relatively safe path we move the safety con-
straint into the objective function so that it can be optimized
together with the quality measure of the subgoal. The new
objective is to maximize

Q'(P(t))  te€ltotn] -
under the constraint
dP(t)

where Q’() depends on the safety of the entire path and the
quality of the subgoal.
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Fig. 9. Building the RS structure incrementally by dilating the path credit

and adding the new safety information.

In our framework, there are two methods for satisfying
the constraints and optimizing the objectives: the first ap-
proach is by control structure, and the second is by eval-
uation functions. In the basic example, the constraints are
strictly enforced by ttie program control structure, i.e., di-
lation for the speed constraint and trimming for the safety
constraint, while the objective function is optimized by an
evaluation function that computes the weighted sum of the
subgoal criteria for each grid cell. Using control structure
reduces the size of the solution space, but it will also re-
duce the flexibility to perform various ways of optimiza-
tion.

To optimize safety together with the criteria for the subgoal,
we should avoid trimming the qualified region at each time
step. Instead, we keep in each grid cell a value representing
the quality of the best path to this cell and propagate this
information during the dilation process. In general, we refer
to this value as path credit, which in this case can be a
count of safe steps along the path. See. Fig. 9 and compare
it to Fig. 1. So the data structure for each qualified region
is not simply a bit map, but a table in which a value is
associated with each cell representing the safety of the safest
path among all paths to the cell at that moment. At the end of
the planning interval, we can use this information to optimize
the choice of the subgoal in a variety of ways, which will be
discussed later. Once we choose the subgoal, the path can be
traced backward by the standard gradient-following technique
[10]. As a result, this extension to our framework provides
the flexibility to deal with more complex planning problems.
The complexity will increase as the size of the data structure
increases, but it should remain in the same order as the original
one.
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C. Path Planning for a Group of Agents

A more complicated problem is to plan a path for a group
of agents so that they can maintain a given configuration
and mutual visibility during movement. It is easy to see that
all requirements except speed can be absorbed as part of
the objective function to be optimized. However, too much
flexibility makes the solution space intractable. Especially in
this case, the flexibility of the group’s possible configurations
makes it difficult to measure safety and intervisibility. So we
take their configuration as a constraint and restrict our attention
to the following more specific problem: given a group of
agents located along a line segment, find a path for the group
that satisfies the speed constraints and optimizes the following
factors:

* safety—hidden froin the adversary agents;

* intervisibility—the agents can see their partners;

* configuration—the agents maintain their configuration as

a line segment but the orientation of the line segment and
the spacing between the agents can change. However,
there is a limit on the length of the line segment, and we
do not allow the spacings to change significantly along
the path.

Using the same formalism as in the previous subsection, we
can write the general form of this optimization as optimizing

Q(Px(t))

where Py (t) is the path for the kth agent and Q is the quality
measure over all paths. However, for each time instant, we
have a 2k-dimensional instead of two-dimensional solution
space, which is prohibitively large. To reduce the dimension-
ality of the solution space, we use the configuration constraint
and treat the group of agents as a line segment of a fixed fength.
Now, a path point can be represented by three parameters: the
X and Y coordinates of the midpoint, and the orientation.
With the additional time-axis, we obtain a four-dimensional
parameter space. We can apply our framework in this four-
dimensional search space, but it is still too lirge to be practical.
So we make a further reduction by applying a decomposition.

First we represent the locations of the agents by only one
cell on the terrain, which is the center of the group, and find a
good path for the center, where “good” means a high likelihood
that a segment centered at this cell will be safe and intervisible,
no matter what orientation the segment is in. After finding this
corridor, we can allocate the agents. within the corridor using
some simple heuristics. Since the corridor has a statistically
good evaluation for all the constraints, we should be able to
find an acceptable allocation.

To find a path for the center of the group, we can still model
the motion constraint by dilation since the range of speed for
the center point is the same as fotr the individual agent by
the assumption that all agents have the same speed constraint.
Therefore we can apply the method of finding a relatively safe
path by propagating a path credit defined on both safety and
intervisibility for each cell to be the center of the line segment.

In this case, safety is measured as the number of safe cells
within the distance of half of the segment length from each

potential group center, i.e., a circle with a diameter equal to the
segment length. This information has to be computed for each
time step, and the complexity is O(log L) if we approximate
the circle by a square, where L is the length of the line
segment. Since L is much less than the side length of the
terrain, this computation will not increase the complexity of
the entire algorithm.

Intervisibility is measured by sampling several line seg-
ments centered at a grid cell, and counting the number of
pairs of cells that can see each other along these line segments.
Using a variation of the ray-visibility algorithin, which shifts
the entire DTM along the direction of each sampled line
segment, we can count this number for all cells in O(M x L)
time, where M is the number of samples we take, and L is
the length of the line segment. Since both M and L should be
fairly small, and this computation needs to be done only once,
this computation will not increase the overall complexity of
the entire algorithm.

D. Optimization on the Objective Function

In the previous subsections we have dealt with different
extensions by moving constraints into the objective functions,
dilating path credit Instead of trimming, and reducing the
dimensionality of the problem variables. There are also many
variations on the objective function itself. With small modifi-
cations to the dilatioh process, mainly on the updating of path
credit, we can achieve different types of optimization. Here
are some examples.

1) Find the path with highest minimal cell credit on all
path points. Cell credit refers to the evaluation of each
grid cell at each step, e.g., safety, intervisibility, or their
combination. Trimming should not be performed during
each dilation for this criterion. Each cell first propagates
its path credit to its neighbors and sets its path credit
to the maximum among the received values and its own
path credit. Then each grid cell updates its path credit
to the minimum between the result obtained from the
above operation and the new evaluation.

2) Find the path with highest sum of cell credits along all
path points. In this case, the path credit is the largest
partial sum of cell credits. Each cell updates'the value
by adding its new cell credit to the maximal partial sum
received.

3) Highest total cell credit with a threshold on minimal cell
credit. We can use the dilation scheme in the previous
case, and trim the region by the threshold on its new
evaluation.

Besides the dilation process, we can also make modifica-
tions to the evaluation of cell credit. For examiple, we can
compute the level of safety by considering the number of
adversaries each cell is exposed to, and also the distance to
these adversaries. .

Usually, it is important to ensure that the final goal will
be reached within a reasonable amount of time. For this
consideration, we can increase the weight on the distance to
the final goal in the subgoal criteria after each iteration of the
subplanning process.
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VI. TERRAIN TRAVERSABILITY

So far we have modeled the traversal cost only on the
Euclidean distance between points. This is not realistic, since
it takes much more time and energy to traverse uphill than
downhill. In general, the traversal costs should depend not
only on the Euclidean distance, but also on the slope, the
terrain type, the ground cover, and other factors that may
affect the mobility. In this section, we assume that there is
a way to assign traversal costs, and we present a method of
taking these costs into consideration.

There are two different interpretations of the traversal cost:
one is to model how far the agent can travel within a
certain amount of time. This is the interpretation used in
the previous sections. Under this interpretation, the agent
must be able to travel through several grid cells in one time
step in order to distinguish between different traversal costs
effectively. Therefore, either the time step has to be very long
or the terrain resolution has to be very fine. Both options
are usually undesirable since a long time step would reduce
the quality of the path, and the size of the solution space
grows quadratically in the spatial resolution. Thus, we take a
different interpretation, which considers how many time units
it will take to travel through a certain distance. In order to
distinguish different traversal costs, a finer scale of time is
adopted such that it always takes more than one unit of time
to move through a cell.

In order to reflect the effect of the terrain, modifications
must be made to the dilation process. Dilation is the process
that implements the dynamic programming technique to con-
struct the RS structure. The RS structure can be viewed as a
three-dimensional table in which each element is identified by
its corresponding terrain cell and a time index. Each element
stores a value called the path credit, which represents the
quality of the best path to the corresponding grid cell at that
moment. Under the first interpretation, dilation is performed
by propagating the most recent path credit to all cells within
a certain distance. Under the second interpretation, we first
discretize the directions in which the agent can move through
a grid cell and associate a traversal cost for each of them as the
amount of time needed to pass through the cell in that given
direction. Then dilation is performed by propagating delayed
path credits to the neighboring cells. The length of the delay

_depends on the traversal cost assigned to the corresponding
direction of the cell. After each cell receives the values from
its neighboring cells, its path credit is updated in the same way
as discussed in the previous section. For example, if we are
planning a relatively safe path using the number of safe cells
along the path as the path credit, the credit value in the RS
structure for a cell P at time ¢ is defined by the recurrence
relation shown at the bottom of the page, where @Q is any
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neighbor of P, and

Tcost(Q, P) = the traversal cost through @ in the

direction to P

Safety(P,t) = { 1, if cell P is safe at time ¢

0, otherwise
ty
Safety_count(P, t1,t2) = Z Safety(P,1).

t=t,

See Fig. 10 for an illustration of this formula, in which
four directions are considered for traversing through a cell.
Each path credit is delayed by an amount of time equal to
the traversal cost before it is propagated to the corresponding
neighbor and it is updated with safety information during
the delayed period. After receiving the path credits from its
neighbors, each cell decides its current path credit by choosing
the maximum among the received values and its own previous
path credit which is also updated by adding the current safety
to it. Using this formula, the RS structure can be constructed
by iterating on each unit of time through the subplan interval.
Then we can apply the same principles in choosing the subgoal
and finding the path backward as discussed before.

There are several issues concerning implementation that
we should mention here. First is memory requirements. The
size of the RS structure grows linearly in the number of
temporal samples as we use a finer scale of time to distinguish
between different traversal costs. As the whole RS structure is
stored only for finding the path using backward dilation, one
possibility for reducing the memory requirement is to store
pointers to the predecessors during the construction of the RS
structure instead of maintaining the entire RS structure. Since
the predecessor of a cell is either itself or a neighboring cell,
the number of bits needed for the pointer is usually much less
than that for the path credit. Using pointers also simplifies
the extraction of the path, because the backward dilation is
complicated with the modeling of terrain traversability. It is
still necessary to maintain a few slices of the RS structure
for the forward dilation, but the number is reduced from the
number of temporal samples in the entire subplan interval
to the maximal traversal cost, which is usually only a small
percentage of the former.

Another issue is the number of visibility analyses needed
under this modification. Since the time scale is finer in this
case, we do not have to compute the visibility map at each
unit of time if we just want to obtain the same accuracy as
in the previous versions. We can define a sampling period
as several units of time, compute the visibility only once
every sampling period and use the result for the entire period.
Since the visibility analysis dominates the running time of
the entire algorithm, the sampling period is an important
factor for the trade-off between accuracy and running time.

Path_credit(P,t) = Max{Path_credit(P,t — 1) + Safety(P.t),
Path_credit(Q, t — T'cost(Q, P)) + Safety count(Q,t — Teost(Q, P) + 1,1)}
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Fig. 10. Dilation with the consideration of terrain traversability. Cell P
determines its path credit at time ¢ by choosing the maximum among all
received values and the value of staying at P from ¢ — 1 to ¢, which is 2241
in this case. For each neighbor of P, the propagated value is the sum of all
values shown in the two column table associated with each cell.

The algorithm can be made more flexible by setting different
sampling periods for each adversary depending on its speed
of motion to obtain even better efficiency.

VII. EXPERIMENTAL RESULTS

In this section, we present the results from our implementa-
tion of the basic example and the extensions. All experiments
were conducted on a Connection Machine CM-2 using 8K
processors. The terrain size is 512 x 512 grid cells. We allocate
one virtual processor to each grid cell, so the virtual processor

-ratio is 32. '

A. Safe Path for a Sihgle Agent

Figs. 11-14 illustrate an experiment of the basic planning
algorithm, which returns an absolutely safe path to a subgoal.
Fig. 11 shows the terrain and the initial locations. The friendly
agent is located to the left of the center of the terrain, which
is marked by a black dot in a framed square. The final goal,
marked by a solid white square, is at the top of a hill near
the bottom of the figure. There are four adversaries moving
on the terrain. Their positions are marked by crosses and their
predicted trajectories for this subplan interval are shown by
the white line segments originating from their initial locations.
For simplicity, we assume that each adversary moves along a
straight line. The height of the terrain is represented by a gray

Fig. 11." Initial locations of the experiment.

Fig. 12. The situation at the 29th unit of time.

level; lighter pixels are higher. Since most events occur in the
lower part of the terrain, we will only show a 360 x 360
portion in the subsequent figures.

In this experiment, we plan for an interval of 32 time units,
with a two-unit thinking time. During each unit of time, the
friendly agent is able to move through two grid points, so
the radius for each dilation is two. Our planner analyzes the
visibility of each adversary at each time instant and constructs
the RS structure. Fig. 12 shows the visibility analysis from
one of the predicted adversary positions to the RS region at
the 29th unit of time. The RS region is shown by the dark
gray area around the initial location of the friendly agent,
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Fig. 13. The situation at the 30th unit of time.

Fig. 14. At the end of the planning interval, a subgoal is chosen a safe and
path to the subgoal is found.

which is now marked in white due to the dark background.
The highlighted irregular area between the adversary position
and the RS region indicates the area that is visible to this
adversary. The intersection of the RS region and the visible
region, shown by the black area between the two, is removed
by the trimming operation and Fig. 13 shows the resulting
RS region. If no safety constraint is applied, the RS region
would be an octagon since we are using an octagonal dilation
algorithm.

After the complete RS structure is built, a subgoal is chosen
and a safe path to the subgoal is returned by the planner. See
Fig. 14. Due to the safety constraint, the path has a detour

Fig. 15. The path for a group of agents.

toward the upper-right corner at the beginning of the interval,
then makes a sharp turn back to the direction toward the final
goal.

The overall running time for this experiment is about 100
s, including all graphic display and text messages. Without all
these display operations, it can be shortened to 75 s. Visibility
analysis is the dominating part of the running time. In our
algorithm, visibility analysis is performed for each adversary at
each time step, so it is performed 120 times in this experiment.

B. Planning for a Group of Agents

Fig. 15 shows the path returned by our planner for a group
of three agents. The path shown in the figure is the path for
the center of the group. All initial settings are the same as
the previous example except that the friendly agents have a
faster speed for a better display of the agent locations. After
finding the path for the center, the locations of the other agents
are determined by the direction of motion and the spacing
between agents. Fig. 16 enlarges the region around the path
and shows the configuration of the group as line segments. The
three agents are located on both end points and the midpoint
of each line segment. The safety and intervisibility of each
agent is indicated by the brightness and the shape of the marks
showing the agent locations. A white | means a path point
at which the agent is safe and visible to at least one of its
partners. A black L means a path point at which the agent
is neither safe nor visible to any of its partners. A white dot
indicates an agent location that is safe but not visible to its
partners, while a black dot indicates the opposite situation.

C. Planning a Relatively Safe Path with Modeling of Terrain
Traversability

Figs. 17-19 show three constituent subplans of a complete
path from the initial location to the final goal. These paths are
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Fig. 16. The configuration of the group and the actual location of each agent.

Fig. 17. The path of stage one.

relatively safe and take into consideration terrain traversability.
The motions of the adversaries are assumed linear throughout
the planned interval. We use the same notations for marking
the positions except that the dark area around the friendly
agent indicates the reachable region. The subgoal is chosen by
a weighted function based on several criteria, so it may not
be at the edge of the reachable region. Since we are using a
finer scale of time and a four-neighbor propagation scheme,
the path is four-connected on the terrain. The sizes and the
shapes of the reachable regions vary according to the traversal
cost. If all costs are the same, it should be in the shape of a
diamond due to the four-neighbor propagation scheme.

Fig. 18. The path of stage two.

Fig. 19. The path of stage three.

VIII. CONCLUSION

In this paper, we have proposed methods for solving
visibility-based terrain path planning problem using massively
parallel hypercube machines. Since this kind of problem is
known to be hard, our algorithms use approximations based
on both temporal and spatial sampling. We first show how
to solve a typical example, which plans for a single agent a
path that is hidden from several moving adversaries. Next,
we show that with certain modifications, we can solve a
variety of path planning problems, including optimization
among safety and other criteria, planning for a group of
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agents under an intervisibility criterion, and consideration of
terrain traversability. The time complexity is in general O(T x
E x log N) using O(N) processors, where T is the number
of temporal samples, E is the number of adversary agents,
and N is the number of grid cells on the terrain. Expected
communication time is included in this complexity, and we
also discussed practical methods for solving communication
bottieneck. All algorithms are implemented on a Connection
Machine CM-2.

In the future, we plan to develop algorithms that perform
more complicated planning for a group of agents. We also
plan to develop algorithms on polyhedral terrain models
in order to plan a path on a larger scale of terrain
with a limited number of processors. We may combine
the results in a hierarchical manner so that the coarse-
grained planner based on the polyhedral model generates
a coarse plan that indicates where the subgoal should be
for each stage and the fine-grained planner based on the
grid model refines the coarse plan and generates an exact
path.
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