Image Primitives and Correspondence
$I(x,y)$
Image Features

Local, meaningful, detectable parts of the image.
- Edge detection
- Line detection
- Corner detection

Motivation
- Information content high
- Invariant to change of view point, illumination
- Reduces computational burden
- Uniqueness
- Can be tuned to a task at hand
Filetring and Image Features

Given a noisy image

How do we reduce noise?
How do we find useful features?

Today:
• Filtering
• Point-wise operations
• Edge detection
Let’s replace each pixel with a *weighted* average of its neighborhood.

- The weights are called the *filter kernel*.
- What are the weights for the average of a 3x3 neighborhood?

```
1 1 1
1 1 1
1 1 1
```

“box filter”

Source: D. Lowe
Defining convolution

Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$.

$$(f \ast g)[m,n] = \sum_{k,l} f[m-k, n-l] g[k,l]$$

Convention: kernel is “flipped”

MATLAB functions: `conv2`, `filter2`, `imfilter`

Source: F. Durand
Details

- What is the size of the output?
- MATLAB: `filter2(g, f, shape)`
 - `shape = 'full'`: output size is sum of sizes of f and g
 - `shape = 'same'`: output size is same as f
 - `shape = 'valid'`: output size is difference of sizes of f and g

![Diagram showing the output size for different shapes](image-url)
Averaging filter 1-D example

\[g[x] = \sum_{k=-\infty}^{\infty} f[k] h[x - k] \]

\[f[x] = [\ldots 0, 0, 2, -2, 2, 0, 0, \ldots] \quad h[x] = \frac{1}{3} [1, 1, 1] \]

\[h[-1] = \frac{1}{3}, h[0] = \frac{1}{3}, h[1] = \frac{1}{3} \quad \text{and 0 everywhere else} \]

\[f[-1] = -2, f[0] = 2, f[1] = -2 \]

Box filter

\[g[x] = \sum_{k=-1}^{1} f[k] h[x - k] \]

Ex. cont.

\[g[-1] = f[-1] h[-1 - 1] + f[0] h[-1] + f[1] h[0] \]

\[g[0] = f[-1] h[-1] + f[0] h[0] + f[1] h[1] \]

Averaging filter center pixel weighted more

\[h[x] = [0.25, 0.5, 0.25] \]
Averaging filter

Original image

Smoothed image

Graphs showing the effect of the averaging filter on a 100th row of the image.
Convolution in 2D

\[g[x, y] = \sum_{k=-\frac{w}{2}}^{\frac{w}{2}} \sum_{l=-\frac{w}{2}}^{\frac{w}{2}} f[k, l] h[x-k, y-l] \]

\[
\begin{array}{cccccc}
10 & 11 & 10 & 0 & 0 & 1 \\
9 & 10 & 11 & 1 & 0 & 1 \\
10 & 9 & 10 & 0 & 2 & 1 \\
11 & 10 & 9 & 10 & 9 & 11 \\
9 & 10 & 11 & 9 & 99 & 11 \\
10 & 9 & 9 & 11 & 10 & 10 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\frac{1}{9}.(10 \times 1 + 11 \times 1 + 10 \times 1 + 9 \times 1 + 10 \times 1 + 11 \times 1 + 10 \times 1 + 9 \times 1 + 10 \times 1) = \frac{1}{9}.(90) = 10
\]
Example:

\[
\frac{1}{9} \left(10 \times 1 + 0 \times 1 + 0 \times 1 + 11 \times 1 + 1 \times 1 + 0 \times 1 + 10 \times 1 + 0 \times 1 + 2 \times 1 \right) = \frac{1}{9} \left(34 \right) = 3.7778
\]
Example:

\[\frac{1}{9}(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x1 + 10x1 + 10x1) = \frac{1}{9}(180) = 20 \]
Example:

\[
\frac{1}{9} \times (10x1 + 0x1 + 2x1 + 9x1 + 10x1 + 9x1 + 11x1 + 9x1 + 99x1) = \frac{1}{9} \times 159 = 17.6667
\]
How big should the mask be?

- The bigger the mask,
 - more neighbors contribute.
 - smaller noise variance of the output.
 - bigger noise spread.
 - more blurring.
 - more expensive to compute.
- In Matlab function `conv`, `conv2`
Example: Smoothing by Averaging
Gaussian Filter

- A particular case of averaging
 - The coefficients are samples of a 1D Gaussian.
 - Gives more weight at the central pixel and less weights to the neighbors.
 - The further away the neighbors, the smaller the weight.

\[g(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}. \]

Sample from the continuous Gaussian
Smoothing with a Gaussian
How big should the mask be?

- The std. dev of the Gaussian σ determines the amount of smoothing.
- The samples should adequately represent a Gaussian.
- For a 98.76% of the area, we need
 \[
 m = 5\sigma
 \]
 \[
 5.(1/\sigma) \leq 2\pi \Rightarrow \sigma \geq 0.796, \ m \geq 5
 \]

$$g[x] = [0.136, 0.6065, 1.00, 0.606, 0.136]$$

5-tap filter
Gaussian filters

- Remove “high-frequency” components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small-$$\sigma$$ kernel, repeat, and get same result as larger-$$\sigma$$ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. $$\sigma$$ is same as convolving once with kernel with std. dev. $$\sqrt{2}$$
- *Separable* kernel
 - Factors into product of two 1D Gaussians

Source: K. Grauman
Separability of the Gaussian filter

\[G_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)\right) \]

The 2D Gaussian can be expressed as the product of two functions, one a function of \(x \) and the other a function of \(y \).

In this case, the two functions are the (identical) 1D Gaussian.

Source: D. Lowe
Separability example

2D convolution
(center location only)

The filter factors
into a product of 1D filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:

Source: K. Grauman
Image Smoothing

- Convolution with a 2D Gaussian filter

\[\tilde{I}(x, y) = I(x, y) * g(x, y) = I(x, y) * g(x) * g(y) \]

- Gaussian filter is separable, convolution can be accomplished as two 1-D convolutions

\[\tilde{I}[x, y] = I[x, y] * g[x, y] = \sum_{k=-w/2}^{w/2} \sum_{l=-w/2}^{w/2} I[k, l]g[x - k]g[y - l] \]
How big should the mask be?

- The bigger the mask,
 - more neighbors contribute.
 - smaller noise variance of the output.
 - bigger noise spread.
 - more blurring.
 - more expensive to compute.
Edges

- They happen at places where the image values exhibit sharp variation.
Edge detection (1D)

Edge = sharp variation

Large first derivative
Digital Approximation of 1st derivatives

\[
\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

\[
\frac{df(x)}{dx} \equiv \frac{f(x + 1) - f(x - 1)}{2}
\]

Convolve with:

\begin{array}{c|c|c}
-1 & 0 & 1
\end{array}
Edge Detection (2D)

Vertical Edges:

Convolve with:

| -1 | 0 | 1 |

Horizontal Edges:

Convolve with:

<table>
<thead>
<tr>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Noise cleaning and Edge Detection

- we need to also deal with noise
- Combine Linear Filters

- Instead of smoothing, followed by derivative computation
- Convolve with derivative of the smoothing filter
Noise Smoothing & Edge Detection

Convolve with:

$$\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}$$

This mask is called the (vertical) Prewitt Edge Detector

Outer product of box filter $[1 \ 1 \ 1]^T$ and $[-1 \ 0 \ 1]$
Noise Smoothing & Edge Detection

Convolve with:

<table>
<thead>
<tr>
<th>-1</th>
<th>-1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Horizontal Edge Detection

Noise Smoothing

This mask is called the (horizontal) Prewitt Edge Detector
Gaussian and its derivative

\[g(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{x^2}{2\sigma^2}}, \quad g'(x) = -\frac{x}{\sigma^2 \sqrt{2\pi \sigma}} e^{-\frac{x^2}{2\sigma^2}}. \]
Vertical edges \[I_x(x, y) = \frac{\partial I}{\partial x} \]

First derivative - one column

Horizontal edges \[I_y(x, y) = \frac{\partial I}{\partial y} \]
• Image Gradient
\[\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right] \]

• Gradient Magnitude
\[m = \sqrt{\left(\frac{\partial I}{\partial x} \right)^2 + \left(\frac{\partial I}{\partial y} \right)^2} \]

• Gradient Orientation
\[\theta = \tan^{-1}\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) \]
Canny Edge Detector

- Edge detection involves 3 steps:
 - Noise smoothing
 - Edge enhancement
 - Edge localization
- J. Canny formalized these steps to design an *optimal* edge detector
- How to go from derivatives to edges?

Horizontal edges
Edge Detection

Canny edge detector
- Compute image derivatives
- if gradient magnitude $> \tau$ and the value is a local maximum along gradient direction – pixel is an edge candidate
Algorithm Canny Edge detector

- The input is image I; G is a zero mean Gaussian filter (std = σ)

1. $J = I \ast G$ (smoothing)
2. For each pixel (i,j): (edge enhancement)
 - Compute the image gradient
 - $\nabla J(i,j) = (J_x(i,j), J_y(i,j))'$
 - Estimate edge strength
 - $e_s(i,j) = (J_x^2(i,j) + J_y^2(i,j))^{1/2}$
 - Estimate edge orientation
 - $e_o(i,j) = \arctan(J_x(i,j)/J_y(i,j))$

- The output are images E_s - Edge Strength - Magnitude
 and Edge Orientation E_o.
- E_s has large values at edges: Find local maxima

- ... but it also may have wide ridges around the local maxima (large values *around* the edges)
The inputs are E_S & E_O (outputs of CANNY_ENHANCER)

Consider 4 directions $D=\{0, 45, 90, 135\}$ wrt x

For each pixel (i,j) do:
1. Find the direction $d \in D$ s.t. $d \equiv E_O(i,j)$ (normal to the edge)
2. If $\{E_S(i,j) \text{ is smaller than at least one of its neigh. along } d\}$
 - $I_N(i,j)=0$
 - Otherwise, $I_N(i,j)=E_S(i,j)$

The output is the thinned edge image I_N
Graphical Interpretation
Thresholding

- Edges are found by thresholding the output of NONMAX_SUPRESSION
- If the threshold is too high:
 - Very few (none) edges
 - High MISDETECTIONS, many gaps
- If the threshold is too low:
 - Too many (all pixels) edges
 - High FALSE POSITIVES, many extra edges
SOLUTION: Hysteresis Thresholding

$E_s(i,j) > H$

$E_s(i,j) < H$

$E_s(i,j) > L$

$E_s(i,j) < L$

$E_s(i,j) > H$
Canny Edge Detection (Example)

Original image

Strong edges only

gap is gone

Strong + connected weak edges

Weak edges

courtesy of G. Loy
Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector.
- Filtering the image is a set of dot products.

Insight
- Filters look like the effects they are intended to find.
- Filters find effects they look like.
Robinson Compass Masks

-1 0 1
-2 0 2
-1 0 1

0 1 2
-1 0 1
-2 -1 0

1 2 1
0 0 0
-1 -2 -1

2 1 0
1 0 -1
0 -1 -2

1 0 -1
2 0 -2
1 1 -1

0 -1 -2
-1 0 -1
2 1 0

-1 -2 -1
0 0 0
1 2 1

-2 -1 0
-1 0 1
0 1 2
Filter Bank

Leung & Malik, Representing and Recognizing the Visual Appearance using 3D Textons, IJCV 2001