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Abstract. We consider the problem of object recognition in 3D using
an ensemble of attribute-based classifiers. We propose two new concepts
to improve classification in practical situations, and show their imple-
mentation in an approach implemented for recognition from point-cloud
data. First, the viewing conditions can have a strong influence on classi-
fication performance. We study the impact of the distance between the
camera and the object and propose an approach to fusing multiple at-
tribute classifiers, which incorporates distance into the decision making.
Second, lack of representative training samples often makes it difficult
to learn the optimal threshold value for best positive and negative de-
tection rate. We address this issue, by setting in our attribute classifiers
instead of just one threshold value, two threshold values to distinguish
a positive, a negative and an uncertainty class, and we prove the theo-
retical correctness of this approach. Empirical studies demonstrate the
effectiveness and feasibility of the proposed concepts.

1 Introduction

Reliable object recognition from 3D data is a fundamental task for active agents
and a prerequisite for many cognitive robotic applications, such as assistive
robotics or smart manufacturing. The viewing conditions, such as the distance of
the sensor to the object, the illumination, and the viewing angle, have a strong
influence on the accuracy of estimating simple as well as complex features, and
thus on the accuracy of the classifiers. A common approach to tackle the prob-
lem of robust recognition is to employ attribute based classifiers, and combine
the individual attribute estimates by fusing their information [1],[2],[3].

This work introduces two concepts to robustify the recognition by addressing
common issues in the processing of 3D data, namely the problem of classifier
dependence on viewing conditions, and the problem of insufficient training data.

We first study the influence of distance between the camera and the object on
the performance of attribute classifiers. Unlike 2D image processing techniques,
which usually scale the image to address the impact of distance, depth based
object recognition procedures using input from 3D cameras tend to be affected
by distance-dependent noise, and this effect cannot easily be overcome [4].
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We propose an approach that addresses effects of distance on object recog-
nition. It considers the response of individual attribute classifiers’ depending on
distance and incorporates it into the decision making. Though, the main fac-
tor studied here is distance, our mathematical approach is general, and can be
applied to handle other factors affected by viewing conditions, such as lighting,
viewing angle, motion blur, etc.

To implement the attribute classifiers, usually, the standard threshold method
is used to determine the boundary between positive and negative examples. Us-
ing this threshold the existence of binary attributes is determined, which in turn
controls the overall attribute space. However, there may not be enough train-
ing samples to accurately represent the underlying distributions, which makes it
more difficult to learn one good classification threshold that minimizes the num-
ber of incorrect predictions (or maximizes the number of correct predictions).

Here we present an alternative approach which applies two thresholds with
one aiming for a positive predictive value (PPV), giving high precision for posi-
tive classes, and the other aiming for a negative predictive value (NPV), giving
high precision for negative classes. Each classifier can then have three types of
output: “positive” when above the high PPV threshold, “negative” when below
the high NPV threshold and “uncertain” when falling into the interval between
the two thresholds. Recognition decisions, when fusing the classifiers, are then
made based on the positive and negative results. More observations thereby are
needed for drawing a conclusion, but we consider this trade-off affordable, since
we assume that our active agent can control the number of observations. Note
that two threshold approaches have previously been used for the purpose of
achieving results of high confidence, for example in [5], and in probability ratio
tests.

The underlying intuition here is that it should be easier to obtain the high
PPV and NPV thresholds than the classical Bayes threshold (minimizing the
classification error), when the number of training samples is too small to repre-
sent well the underlying distribution. Fig. 1a illustrates the intuition. The top
figure shows the ground truth distributions (of the classification score) of the
positive and negative class. The lower figure depicts the estimated distributions
from training samples, which are biased due to an insufficient amount of data.
Furthermore, as our experiment revealed, even the ground truth distribution
could be dependent on viewing conditions, which makes it more challenging to
learn a single optimal threshold. In such a case, the system may end up with
an inaccurate Bayes threshold. However, it is still possible to select high PPV
(NPV) thresholds by setting these thresholds (at a safe distance) away from the
negative (positive) distribution.

For each basic (attribute) classifier, we can also define a reliable working
region indicating a fair separation of the distributions of positive and negative
classes. Hence our approach can actively select “safe” samples and discard “un-
safe” ones in unreliable regions. We prove the asymptotic correctness of this
approach in section 3.3.
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(a) (b)

Fig. 1. (a): Illustration of common conditional probability density functions of the
positive and negative class. Top: ground truth distribution of the two classes; bottom:
a possible distribution represented by the training data. Blue line: positive class; red
line: negative class. dashed line: (estimated) Bayes threshold; solid line: high PPV and
NPV thresholds. (b): The relationship of Objects (O), attributes (Fi), environmental
variables (Ek) and observations (Zk

i ) in our model.

Integrating both concepts, our complete approach to 3D object recognition
works as follows: Offline we learn attribute classifiers, which are distance depen-
dent. In practice, we discretize the space into n distance intervals, and for each
interval we learn classifiers with two thresholds. Also, we decide for each at-
tribute classifier a reliable range of distance intervals. During the online process
our active system takes RGBD images as it moves around the space. For each
input image, it first decides the distance interval in order to use the classifiers
tuned to that interval. Classifier measurements from multiple images are then
combined via maximum a posteriori probability (MAP) estimation.

Our work has three main contributions: 1) We put forward a practical frame-
work for fusing component classifiers’ results by taking into account the distance,
to accomplish reliable object recognition. 2) We prove our fusion framework’s
asymptotic correctness under certain assumptions on the attribute classifier and
sufficient randomness of the input data. 3) The benefits of introducing simple
attributes, which are more robust to viewing conditions, but less discriminative,
are demonstrated in the experiment.

2 Related Work

Creating practical object recognition systems that can work reliably under dif-
ferent viewing conditions, including varying distance, viewing angle, illumination
and occlusions, is still a challenging problem in Computer Vision. Current sin-
gle source based recognition methods have robustness to some extent: features
like SIFT [6] or the multifractal spectrum vector (MFS) [7] in practice are in-
variant to a certain degree to deformations of the scene and viewpoint changes;
geometric-based matching algorithms like BOR3D [8] and LINEMOD [9] can
recognize objects under large changes in illumination, where color based algo-
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rithms tend to fail. But in complicated working environments, these systems
have difficulties to achieve robust performance.

One way to deal with variations in viewing conditions is to incorporate dif-
ferent sources of information (or cues) into the recognition process. However,
how to fuse the information from multiple sources, is still an open problem.

Early fusion methods have tried to build more descriptive features by com-
bining features from sources like texture, color and depth before classification.
For example, Asako et al. builds voxelized shape and color histogram descrip-
tors [1] and classifies objects using SVM, while in [10] information from color,
depth, SIFT and shape distributions is described by histograms and objects are
recognized using K-Nearest Neighbors.

Besides early fusion, late fusion also has gained much attention and achieves
good results. Lutz at al. [3] proposes a probabilistic fusion approach, called
MOPED [11], to combine a 3D model matcher, color histograms and feature
based detection algorithm, where a quality factor, representing each method’s
discriminative capability, is integrated in the final classification score. Meta in-
formation [12] can also be added to create a new feature. Ziang et al. [2] blends
classification scores from SIFT, shape, and color models with meta features pro-
viding information about each model’s fitness from the input scene, which results
in high precision and recall on the Challenge and Willow datasets. Considering
influences due to viewing conditions, Ahmed [13] applies an AND/OR graph
representation of different features and updates a Bayes conditional probability
table based on measurements of the environment, such as intensity, distance and
occlusions. However, these methods may suffer from inaccurate estimation of the
conditional probabilities involved, because of insufficient training data.

In our work, we propose a framework for object recognition using multiple
attribute classifiers, which considers both, effects due to viewing conditions and
effects due to biased training data that systems face in practice. We implement
our approach for an active agent that takes advantage of multiple inputs at
various distances.

3 Assumptions and Formulation

Before going into the details and introducing the notation, let us summarize
this section. Section 3.1 defines the data fusion of the different classification
results through MAP estimation. Section 3.2 proves that MAP estimation will
classify correctly under certain requirements and assumptions. The requirements
are restrictions on the values of the PPV and NPV. The assumptions are that
our attribute classifiers perform correctly in the following sense: A ground truth
positive value should be classified as positive or uncertain and a ground truth
negative value should be classified as negative or uncertain. Finally section 3.3
proves asymptotic correctness of MAP estimation. The estimation will converge,
even if the classifiers don’t perform correctly, under stronger requirements on the
values of the PPV and NPV.
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Let the objects in the database be described by the set O = {oj} (j =
1, 2, ..., |O|). Each object oj ∈ O is represented by a attribute vector F j =
[f1j , f2j , ..., fMj ]

T , whereM is the number of attributes. For the i-th attribute Fi,
there is a corresponding component classifier to identify it. Denote its observation
as Zki , where i is the index for the classifier and k is the observation number. Here
we consider binary attributes fij ∈ Range(Fi) = {0, 1}, ∀i ∈ {1, 2, ...,M}, and
there are three possible values for the observation : Zki = {0, 1, u} k ∈ 1, 2, , , ,K,
where u represents uncertainty for the case that the classification score falls in
the interval between the high PPV and NPV thresholds.

The model also encodes effects due to viewing conditions (or environmental
factors). In this work, we study the effect of distance. Thus, E is the distance
between the object and the camera. However, in future work, other environ-
mental factors can be encoded as additional components. Fig. 1b illustrates the
relationship between objects, attributes, environmental factors and observations
in a graphical model.

In our notation EK = {E1, E2, ..., EK} represents the environmental vari-
able at each observation, and ZKi = {Z1

i , Z
2
i , ..., Z

K
i } is the set of observation

results from the i-th classifier. We assume that an observation of an attribute Zki
only depends on the ground truth attribute variable Fi and the environmental
variable Ek. Because we assume that each object oj can be represented by an

M -dimension attribute vector F j , we have P (F |O = oj) =

{
1 if F = F j ,
0 o.w.

3.1 Inference

With K observation results ZK = {ZK1 , ...,ZKM} and corresponding environmen-
tal conditions EK , we want to obtain the posterior probability of the target
object being object oj ∈ O. i.e. P (O = oj |ZK ,EK). Based on our graphical
model we have:

P (O = oj |ZK ,EK) =
P (O = oj ,ZK ,EK)

P (ZK ,EK)
=
P (O = oj)P (ZK |F = F j ,EK)P (EK)

P (ZK ,EK)

=
P (EK)P (O = oj)

P (ZK ,EK)

K∏
k=1

M∏
i=1

P (Zki |Fi = fij , E
k)

= λP (O = oj)

K∏
k=1

M∏
i=1

P (Fi = fij |Zki , Ek)

P (Fi = fij)

(1)

where λ , P (EK)
∏K
k=1

∏M
i=1 P (Zki ,E

k)

P (ZK ,EK)
∏K
k=1

∏M
i=1 P (Ek)

. Because

P (Fi = fij) =
∑
t

P (O = ot)P (Fi = fij |O = ot) =
∑

{t|fit=fij}

P (O = ot) (2)
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Finally, we have

P (O = oj |ZK ,EK) = λP (O = oj)

K∏
k=1

M∏
i=1

P (Fi = fij |Zki , Ek)∑
{t|fit=fij} P (O = ot)

. (3)

The recognition A then is derived using MAP estimation as:

A , argmax
oj

P (O = oj |ZK ,EK). (4)

In our framework, we use the high positive and negative predictive value obser-
vations (Z = 0, 1) to determine the posterior probability.

We also take into account the influence of environmental factors. That is,
only observations from a reliable working region are adopted in the probabil-
ity calculation. When the environmental factor is distance, the reliable working
region is defined as a range of depth values where the attribute classifier work
reasonably well. We treat a range of distance values as a reliable working re-
gion for a classifier, if the detection rate for this range is larger than a certain
threshold, and the PPV meets the system requirement.

This requirement for the component classifiers is achievable if the positive
conditional probability density function of the classification score has a non-
overlapping area with the negative one. Then we can tune the classifier’s PPV
threshold towards the positive direction (towards left in Fig. 1a) to achieve a
high precision with a guarantee of minimum detection rate.

Formally speaking, our P (Fi = fij |Zki , Ek) is defined as:

P (Fi = 1|Zki , Ek) =


p+i if ek ∈ Ri & zki = 1,
1− p−i if ek ∈ Ri & zki = 0,∑
t|fit=fij P (O = ot) o.w.

(5)

where Ri is the set of environmental values for which the i-th classifier can
achieve a PPV p+i with a detection rate lower bound. As before, k denotes the
k-th observation. If the above condition is not met, either the recognition is
done in an unreliable region or the answer is uncertain. Now equation (3) can
be rewritten as:

P (O = oj |ZK ,EK) = λP (O = oj)

K∏
k=1

∏
i∈Ik

P (Fi = fij |Zki , Ek)∑
{t|fit=fij} P (O = ot)

, (6)

where Ik = Ik+ ∪ Ik− is the index set of recognized attributes at the k-th obser-
vation with Ik+ = {i|ek ∈ Ri & zki = 1} and Ik− = {i|ek ∈ Ri & zki = 0}.

Intuitively, it means that we only use a component classifier’s recognition
result when 1) it works in its reliable range; 2) the result satisfies high PPV or
NPV thresholds. In Section 3.2, we introduce the predictive value requirements
for the component classifiers.
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3.2 System Requirement for the Predictive Value

Here we put forward a predictive value requirement for each component classifier
to have correct MAP estimations assuming there do not exist false positives or
false negatives from observations.

To simplify our notation, we define the prior probability of object πj ,
P (O = oj), j = (1, 2, ..., No) and the prior probability of attribute Fi being

positive as wi ,
∑
{t|fit=1}

πt, (i = 1, 2, ...,M). For each attribute, the following

ratios are calculated: r+i , max(1,
max{t|fit=0} πt
min{t|fit=1} πt

), r−i , max(1,
max{t|fit=1} πt
min{t|fit=0} πt

).

I+Fj and I−Fj are the index sets of positive and negative attributes in F j , and
the reliably recognized attributes’ indexes at the k-th observation are denoted
as I = {I1, I2, ..., IK} (Ik as defined in section 3.1). We next state the conditions
for correct MAP estimation.

Theorem 1. If the currently recognized attributes
⋃
k Ik can uniquely identify

object oj, i.e.
⋃
k Ik+ ⊆ IF+

j
,
⋃
k Ik− ⊆ IF−j , ∀t 6= j,

⋃
k Ik+ * IF+

t
or
⋃
k Ik− *

IF−t , and if ∀i ∈ {1, 2, ...,M} the classifiers’ predictive values satisfy p+i ≥
r+i wi

1+(ri−1)wi and p−i ≥
r−i (1−wi)

wi+r
−
i (1−wi)

, then the MAP estimation result A = {oj}.

This requirement means that if 1) the attributes can differentiate an object
from others, and 2) the component classifiers’ predictive values satisfy the re-
quirement, then for the correct observation input, the system is guaranteed to
have a correct recognition result.

Proof. Based on (6) and the definition above, the posterior probability of oj is,

P (O = oj |ZK ,EK) = λπj

K∏
k=1

( ∏
i∈Ik+

p+i
wi

∏
i∈Ik−

p−i
1− wi

)
. (7)

Because the current observed attributes
⋃
k Ik can uniquely identify oj , we

will have ∀og ∈ O/{oj}, ∃Ig ⊆
⋃
k Ik and Ig 6= ∅, s.t. ∀i ∈ Ig, fgi = 0 if i ∈ Ik+

or fgi = 1 if i ∈ Ik−. Thus, ∀og ∈ O/{oj},

P (O = og|ZK ,EK) = λπg

K∏
k=1

( ∏
i∈Ik+/Ig

p+i
wi

∏
i∈Ik+

⋂
Ig

1− p+i
1− wi∏

i∈Ik−/Ig

p−i
1− wi

∏
i∈Ik−

⋂
Ig

1− p−i
wi

)
.

(8)

Since for each classifier, p+i ≥
r+i wi

1+(r+i −1)wi
and r+i = max(1,

max{t|fit=0} πt
min{t|fit=1} πt

),

we have πj
p+i
wi
≥ πg

1−p+i
1−wj and

p+i
wi
≥ 1 ≥ 1−p+i

1−wi . For similar reasons, we have

πj
p−i

1−wi ≥ πg
1−p−i
wj

and
p−i

1−wi ≥ 1 ≥ 1−p−i
wi

. Also since Ig 6= ∅, we can have (7) >

(8), an thus the conclusion is reached.
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From the proof, we can extend the result to a more general case: if the
currently recognized attributes cannot uniquely determine an object, i.e. there
exists a non-empty set O′ = {oj |oj ∈ O, IF+

j
⊇
⋃
k Ik+ & IF−j ⊇

⋃
k Ik−}, the

final recognition result A = argmax
oj∈O′

πj . Furthermore, if an equal prior probability

is assumed, then A = O′.
Theorem 1 proves the system’s correctness under correct observations. Next,

for the general case section 3.3 proves that MAP estimation asymptotically con-
verges to the actual result under certain assumptions.

3.3 Asymptotic Correctness of the MAP Estimation

Now we are going to prove that MAP estimation will converge to the correct
result when 1) the attribute classifiers’ PPV and NPV are high enough in their
reliable working region, where a lower bound of detection rate exists, and 2) the
inputs are sampled randomly.

Denote di as the detection rate and qi as the false-positive rate of the i-th
attribute classifier when applying the high PPV threshold in its reliable working
region. Similarly, for the high NPV threshold, si denotes the true negative rate
and vi denotes the false negative rate.

Theorem 2. We assume that the inputs are sampled sufficiently random such
that each attribute classifier gets the same chance to work in its reliable region
where a lower bound exists for its detection rate, 0 < A < di ≤ 1 and all the
objects have different positive attributes, i.e. ∀i, j, i 6= j s.t. IF+

i
* IF+

j
. If

the component classifiers’ predictive values p+i and p−i are high enough, MAP
estimation will converge to the correct result asymptotically with an increasing
number of observations.

Proof. Consider the worst case, where only two candidates O = {o1, o2} exist.
Without loss of generality, assume o1 has positive attributes IF+

1
= {1, 2, ...,M1}

and o2 has all the remaining positive attribute IF+
2

= {M1+1,M1+2, ...,M},
where M1 ≥ 1. Also assume o1 is the ground truth object. In this case all the
false-positive and false-negatives will drive the estimation toward o2.

Based on (6), the posterior probability distributions of o1 and o2 can be
written as:

P (O = o1|ZK ,EK) = λπ1

M1∏
i=1

(
p+i
wi

)n
+
i (

1− p−i
wi

)n
−
i

M∏
i=M1+1

(
1− p+i
1− wi

)n
+
i (

p−i
1− wi

)n
−
i

(9)

P (O = o2|ZK ,EK) = λπ2

M1∏
i=1

(
1− p+i
1− wi

)n
+
i (

p−i
1− wi

)n
−
i

M∏
i=M1+1

(
p+i
wi

)n
+
i (

1− p−i
wi

)n
−
i ,

(10)
where n+i and n−i are the number of positive and negative recognition results of
the i-th attribute. Denote n as the number of times the i-th classifier works in its
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reliable region Ei. Based on the central limit theorem, we have P (n+i > ndiα ) = 1

and P (n−i < nαvi) = 1 for i = 1, 2, ...,M1 when n goes to infinity and α can be
any positive constant larger than 1.

For the same reason, we have P (n+i < nαqi) = 1 for i = M1 + 1, ...,M
when n goes to infinity. We use the same n here assuming same likelihood of
reliable working regions for each classifier. Actually it does not matter if there is
a constant positive factor on n, which means that the chances for the classifiers’
reliably working region may be proportional.

Dividing (9) by (10), we obtain:

P (O = o1|ZK ,EK)

P (O = o2|ZK ,EK)
=
π1
π2

∏M1

i=1(
p+i /wi

(1−p+i )/(1−wi)
)n

+
i (

(1−p−i )/(wi)

p−i /(1−wi)
)n
−
i∏M

i=M1+1(
p+i /wi

(1−p+i)/(1−wi) )
n+
i (

(1−p−i )/wi

p−i /(1−wi)
)n
−
i

≥ π1
π2

∏M1

i=1(
p+i /wi

(1−p+i )/(1−wi)
)n

di
α (

(1−p−i )/(wi)

p−i /(1−wi)
)nαvi∏M

i=M1+1(
p+i /wi

(1−p+i)/(1−wi) )
nαqi

(p+i , p−i larger than the threshold in theorem 1)

= c1

(
c2

∏M1

i=1(
p+i

1−p+i
)
d1
α (

1−p−i
p−i

)αvi∏M
i=M1+1(

p+i
1−p+i

)αqi

)n
≥ c1

(
c2

∏M1

i=1(
p+i

1−p+i
)
A
α (

1−p−i
p−i

)
α

1−p−
i

wi

∏M
i=M1+1(

p+i
1−p+i

)
α

(1−p+
i

)

1−wi

)n
(for the upper bound of qi and vi see (Eq. 12))

(11)

Because lim
p→1

p
1−p = ∞ and lim

p→1
( p
1−p )1−p = 1, the division will be larger than

1 when the predictive value of each classifier is high enough, which means the
MAP estimation will yield o1 asymptotically.

The proof of upper bound of qi and vi:

qi = P (Zi = 1|Fi = 0) =
P (Zi = 1)(1− p+i )

1− wi
≤ 1− p+i

1− wi
(12)

vi = P (Zi = 0|Fi = 1) =
P (Zi = 0)(1− p−i )

wi
≤ 1− p−i

wi
(13)

Beyond providing theoretical background, in the next section we perform
experiments on a real object recognition task to first demonstrate the influence
of the environment, and then to validate our framework’s performance.

4 Experiments

In this section, we demonstrate our framework on the task of recognizing objects
on a table top. We first build a pipeline to collect our own data1. The reason

1 The dataset is available from http://ece.umd.edu/~wluan/ECCV2016.html

http://ece.umd.edu/~wluan/ECCV2016.html
http://ece.umd.edu/~wluan/ECCV2016.html
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for collecting our own data is that other available RGBD datasets [14],[15] focus
on different aspects, usually pose or multiview recognition, and do not contain
a sufficient amount of samples from varying observation distances.

Three experiments are conducted to show 1) the necessity of incorporating
environmental factors (the recognition distance in our case) for object recog-
nition; 2) the performance of the high predictive value threshold classifier in
comparison to the single threshold one; and 3) the benefits of incorporating less
discriminative attributes for extending the working range of classifiers.

4.1 Experimental Settings

The preprocessing pipeline is illustrated in Fig. 2a. After a point cloud is grabbed
from a 3D camera such as Kinect or Xtion PRO LIVE, we first apply a passthrough
filter to remove points that are too close or too far away from the camera. Then
the table surface is located by matching the point could to a 3D plane model
using random sample consensus (RANSAC), and only points above the table are
kept. Finally, on the remaining points, Euclidean clustering is employed to gen-
erate object candidates, and point clouds with less than 600 points are discarded.

(a) (b)

Fig. 2. (a) Illustration of the preprocessing pipeline. Left: input; Middle: point cloud
after passthrough filtering; Right: segmented candidate object and removed table sur-
face. (b) The objects we use in the task and their IDs.

For the segmented point clouds, three categories of classifiers are applied,
which are tuned to attributes of fine shape, coarse shape, and color.

Fine shape is recognized by the Viewpoint Feature Histogram (VFH) de-
scriptor, which encodes a point cloud into a 308 dimensional vector. Radu [16]
provides a pipeline of computing VFH features and retrieving the minimum fea-
ture distance matching by fast approximate K-Nearest Neighbors, implemented
in the Fast Library for Approximate Nearest Neighbors (FLANN) [17]. How-
ever, this approach tends to generate false positives when matching different
point clouds with very different distances to the camera. Thus, we adapt the
original recognition pipeline to a two step matching. We first pick up model
point clouds from our database with similar distance to test input point cloud.
Among the nearby template point clouds, we use the minimum VFH feature
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matching distance as the classification score. Both steps use FLANN to accel-
erate neighbor retrieval, where the former step uses the Euclidean distance and
the latter the Chi-Square distance.

As another type of attribute, we use coarse shape, which is less selective than
the fine shape attribute. Our experiments later on demonstrate its advantage of
having a larger working region, thence it can help increase the system’s recog-
nition accuracy over a broader range of distance. Two coarse shapes, cylinders
and planar surfaces, are recognized by fitting a cylindrical and a plane model,
whose coefficients are estimated by RANSAC. The percentage of outlying points
is counted as the classification score for the shape. Thus, a lower score indicates
better coarse attribute fitting in our experiment.

The last type of attribute in our system is color, which is used to augment
the system’s recognition capability. To control the influence of illumination, all
samples are collected under one stable lighting condition. The color histogram
is calculated on point clouds after Euclidean clustering, where few background
or irrelevant pixels are involved. The Hue and Saturation channels of color are
discretized into 30 bins (5 × 6), which works well for differentiating the major
colors.

As shown in Fig. 2b, there are 9 candidate objects in our dataset. To recognize
them, we use 5 fine shape attributes: shape of cup, bottle, gable top carton, wide
mouse bottle, and box; 2 coarse shape attributes: cylinder and plane surface; 3
major colors: red, blue and yellow. The attributes for all objects are listed in
Table 1. In the following experiments, we fix the pose of objects, and set the
recognition distance as the only changing factor.

Object
ID

plane
surface

cylinder

gable
top

carton
shape

box
shape

wide
mouth
bottle
shape

cup
shape

bottle
shape

red
color

blue
color

yellow
color

1 X - X - - - - - X -
2 X - X - - - - X - -
3 X - X - - - - - - X
4 X - - X - - - X - -
5 - X - - X - - - - -
6 - X - - - X - - X -
7 - X - - - - X - - X
8 - X - - - - X X - -
9 - X - - - - X - X -

Table 1. Object IDs and their list of attributes

4.2 Experimental Results

EXPERIMENT ONE: The first experiment is designed to validate our claim
that the classifiers’ response score distributions are indeed distance variant.
Therefore, it is necessary to integrate distance in a robust recognition system.
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Taking the fine shape classifier of bottle shapes as example, we divide the
distance range between 60 cm and 140 cm into 4 equally separated intervals
and collect positive samples (object id 7, 8, 9) and negative samples from the
remaining 9 objects in each distance interval. The number of positive samples in
each interval is 120 with 40 objects from each positive instance, while the number
of negative samples is 210 with 35 from each instance. The distribution of the
bottle classifier’s response score is approximated by Gaussian kernel density
estimation with a standard deviation of 3, and plotted in Fig. 3.
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Fig. 3. Estimated distribution of bottle shape classifier’s response score under 4 recog-
nition distance intervals.

We observe that the output score distribution depends on the recognition
distance interval. Therefore, relying on one single classification threshold across
all the distance intervals would introduce additional error. More importantly, we
observe that with a larger distance, the area of overlap between the positive and
negative distributions, becomes wider, which makes classification more difficult.

EXPERIMENT TWO: Experiment one demonstrated the difficulty of
learning a distance-variant ground truth distribution and corresponding classifi-
cation thresholds. Therefore, we propose to use two high predicative value thresh-
olds when multiple inputs are available. The second experiment is designed to
validate this idea by comparing the classification accuracy of an estimator that
1) uses two high predicative value thresholds, with an estimator that uses 2) one
optimal Bayes threshold minimizing the error in the training data.
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To have a fair comparison, we set our task as recognizing 5 objects (id
1, 4, 5, 6, 9 ) with 5 fine shape attributes such that each object contains one
positive attribute that uniquely identifies it. Both training and testing point
clouds are collected at a distance of 100 cm to 120 cm . To learn the classifica-
tion threshold, we sample 26 point clouds for each object and uniformly select
20 for training. The testing data for each object consists of 22 point clouds that
we can randomly choose from to simulate the scenario of an active moving ob-
server gathering multiple inputs. Here we want to mention a special case. When
our framework is uncertain based on the current input, it randomly select (with
equal probability) one of the possible objects. The classification accuracy be-
tween using a single threshold and using two high predicative value thresholds
are shown in Fig. 4a respectively.

We can see that both methods’ error rates decrease when the number of ob-
servations increases. The approach using two thresholds (the red line) has lower
error rate than the one using a single threshold (the blue line). The green line
shows the error introduced by random selection, when our framework cannot
make a sole decision. The major part of the error in the two thresholds method
is due to this error. It is worth mentioning that under theoretical conditions, the
classical Bayes single threshold should still be the best in minimizing the clas-
sification error. Our method provides an alternative for cases when the training
data in real world scenarios does not represent well the underlying distribution.
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Fig. 4. (a): Error rate using classification with a single threshold (blue) and two high
predictive value thresholds (red). The green line depicts the error component due to
the cases where the two thresholds method has to randomly select. (b) Three systems’
recognition accuracy for different working distance intervals.

EXPERIMENT THREE: The third experiment demonstrates the ben-
efits of using less discriminative attributes for extending the system’s working
range. To recognize the 9 objects in Fig. 2b, we build three recognition systems
utilizing attributes of fine shape and color, coarse shape and color, and all of the
three attributes, respectively. Considering the influence of the recognition dis-
tance on the response score distribution, the complete range of distances from
60 cm to 160 cm is split into 5 equal intervals. We then learn the classifica-
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tion thresholds and predictive values accordingly. Both, the training and the
testing data, consist of around 100 samples from each object across recognition
distances from 60 cm to 160 cm. We learn the PPV and NPV by counting the
training data w.r.t. the thresholds and select thresholds satisfying a predictive
value larger than 0.96. The minimum detection rate for the reliable working
distance interval is 0.09. This means if 1) an attribute classifier cannot find a
threshold with PPV larger than 0.96, and 2) detection rate larger than 0.09 in
a certain distance interval, the output of this attribute classier in this interval
will not be adopted for decision making. During the testing phase, for fair com-
parison, we constrain the number of input point clouds collected from the same
distance interval in each working region. Around 120 point clouds are collected
for each object. Once more, random selection is applied when multiple objects
are found as possible candidates.

Fig. 4b displays the systems’ recognition accuracy after observing three times
in each distance interval. As expected, the classification performance starts to
decrease for larger distances. At 120 cm to 160 cm, the system using fine shape
attributes (blue) performs even worse than the system using less selective coarse
attributes (green). This validates that the coarse shape based classifier has a
larger working region, though its simple mechanisms allows for less discrimina-
tion than the fine grain attribute based classifier. Finally, due to the comple-
mentary properties, the system using all attributes (yellow) achieves the best
performance at each working region.

5 Conclusions

In this work we put forward a practical framework for using multiple attributes
for object recognition, which incorporates recognition distance into the deci-
sion making. Considering the difficulties of finding a single best classification
threshold and the availability of multiple inputs at testing time, we propose to
learn a high PPV and a high NPV threshold and discard uncertain values during
decision making. The framework’s correctness was proven and a fundamental ex-
periment was conducted to demonstrate our approach’s feasibility and benefits.
Additionally, we showed that less selective shape attributes (compared to the
sophisticated ones) can have advantages, because their simple mechanism can
lead to high reliability when the system is working at a large range of distances.

In future work, we plan to extend the approach to a variety of environmental
factors such as lighting conditions, blur, and occlusions. Furthemore, additional
attribute classifiers will be incorporated to improve the system’s recognition
performance.
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