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The Ouchi illusion as an artifact of biased flow estimation
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Abstract

A pattern by Ouchi has the surprising property that small motions can cause illusory relative motion between the inset and
background regions. The effect can be attained with small retinal motions or a slight jiggling of the paper and is robust over large
changes in the patterns, frequencies and boundary shapes. In this paper, we explain that the cause of the illusion lies in the
statistical difficulty of integrating local one-dimensional motion signals into two-dimensional image velocity measurements. The
estimation of image velocity generally is biased, and for the particular spatial gradient distributions of the Ouchi pattern the bias
is highly pronounced, giving rise to a large difference in the velocity estimates in the two regions. The computational model
introduced to describe the statistical estimation of image velocity also accounts for the findings of psychophysical studies with
variations of the Ouchi pattern and for various findings on the perception of moving plaids. The insight gained from this
computational study challenges the current models used to explain biological vision systems and to construct robotic vision
systems. Considering the statistical difficulties in image velocity estimation in conjunction with the problem of discontinuity
detection in motion fields suggests that theoretically the process of optical flow computations should not be carried out in isolation
but in conjunction with the higher level processes of 3D motion estimation, segmentation and shape computation. © 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The perception of motion by visual means plays an
important role for many living organisms. Neuroethol-
ogists have argued that the most basic capabilities
found in animals are based on motion, and the vision
of many simple animals, such as medusae, worms and
insects, is based entirely on motion. The visual stimulus
which forms the basis for all motion interpretation is
some form of 2D visual image motion which is derived
from the light received over time on the retinae of the
eyes. These image motion measurements are further
processed by the brain to solve many visual tasks, the
most fundamental ones of which include controlling eye
movement (Stark, 1968; Coombs & Brown, 1993; Dani-
ilidis, 1996), tracking (Fermüller & Aloimonos, 1992;
Koller, Daniilidis & Nagel, 1993; Smith & Brady, 1995)
segmenting the scene (Nelson, 1991; Zeki, Watson &
Frackowiak, 1993) estimating 3D motion and recon-

structing the scene in view or some representations of
the third space dimension (Daniilidis, 1992; Faugeras,
1992).

For humans and other primates it is considered that
two-dimensional image measurements are computed
which correspond to the velocity measurements of im-
age patterns, called optical flow. The corresponding
field of measurements, the optical flow field, represents
an approximation of the projection of the field of
motion vectors of the 3D scene points on the image.
Computational considerations as well as biological
measurements suggest that optical flow is derived in a
two-stage process (Adelson & Movshon, 1982; Welch,
1989).

In a first stage, from local image measurements, the
velocity component perpendicular to linear features is
computed. The situation is illustrated in Fig. 2. The
velocity vector of a one-dimensional feature (such as a
line or piece of contour) viewed through a small aper-
ture is inherently ambiguous, as it is consistent with any
vector falling on the constraint line (Wallach, 1935).
Only the velocity component perpendicular to the fea-
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ture in the direction of the motion is well defined. In
the computational literature this component is referred
to as normal flow and the ambiguity is referred to as
the aperture problem (Marr and Ullman, 1981).

In order to derive the complete optical flow in a
second stage, normal flow measurements from features
in different directions residing in a neighborhood are
combined. The combination of flow vectors, however,
constitutes an intricate computational problem. The 2D
image measurements are determined by the 3D motion
of the scene relative to the observer and by the depth of
the scene in view. Thus, in order to compute the optical
flow some models about the 3D scene and the 3D
motion have to be employed (Horn & Schunk, 1981;
Horn, 1986).

As is well known, the result is that computational
problems arise at the locations of flow discontinuities,
which are due to objects at different depths or differ-
ently moving scene elements. Within small image
patches arising from coherently moving, smooth parts
of the scene, the optical flow field is well approximated
with a parametric model varying, for example, as a
constant, linear or quadratic function of the image
coordinates (Besl & Jain, 1988). At the locations of
discontinuities, however, it is not, and if image mea-
surements across discontinuities are combined, very
erroneous optical flow measurements may be derived
(Horn & Schunk, 1981). To avoid the smoothing over
boundaries, knowledge of where the discontinuities are
seems to be necessary, which is difficult to obtain from
local image measurements.

Even within areas of smooth flow, the computation
of optical flow poses a problem. The focus of this paper
is to show that for statistical reasons it is very difficult
to obtain accurate optical flow estimates. The ideas
underlying the statistical explanation of optical flow
estimation are as follows: local one-dimensional flow
components — normal flow measurements — are esti-
mated with error. We assume that the estimates of these
components are unbiased. However, when combining
the one-dimensional measurements in a neighborhood
an estimate of optical flow is obtained which is biased.
The estimated value depends on the distribution of
image gradients, the actual flow, and the error in the
normal flow.

The statistical model is used to explain a number of
psychophysical findings, which are concerned with the
perception of motion in patterns with a sparse, limited
set of spatial frequencies. The gradient distribution in
the patterns is such that the bias is highly pronounced.
In particular, we elaborate on the Ouchi illusion and
related experiments (Hine, Cook & Rogers, 1995,
1997). The Ouchi illusion, as shown in Fig. 1, consists
of two black-and-white rectangular checkerboard pat-
terns oriented in orthogonal directions — a back-
ground orientation surrounding an inner disc. Scanning

eye movements over these patterns generate the striking
perception of relative movement of the inner disc. Our
explanation lies in the estimation of differently biased
flow vectors in the two patterns which in turn give rise
to different 3D motion estimates that cause one pattern
to move relative to the other. Furthermore, we explain
a number of observations found in the study of moving
plaids. These two-dimensional patterns, called plaids,
consist of two one-dimensional gratings (such as sine,
cosine, or rectangular waves) with different orientations
whose motion appears coherent or incoherent depend-
ing on various parameters such as contrast, speed, and
spatial frequency. They were introduced originally by
Adelson and Movshon (1982) and have since then been
studied extensively to assess models used in the expla-
nation of human flow computation (Jasinschi, Rosen-
feld & Sumi, 1992; Yo & Wilson, 1992). The
combination of measurements of patterns different than
plaids has sought to determine when smooth contours
are seen to move rigidly as opposed to non-rigidly
(Nakayama & Silverman, 1988a,b).

Models used in the computational and biological
literature to estimate the optical flow in a two-stage
process can be placed in roughly two categories, those
modeling computations in image space and those in
spatiotemporal frequency space. The modeling con-
ducted in this paper concentrates on the first category.

In image space models, the one-dimensional motion
component of features is estimated by assuming the
conservation of image intensity or some function of it.
The gradient based approaches assume that image in-
tensity does not change over a small time interval.
Denoting the image intensity as I, its spatial (in x and
y direction) and temporal derivatives as Ix, Iy, and It,

Fig. 1. A pattern similar to the one by Ouchi (1977).
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respectively, and the velocity of image points in x and
y direction as u and 6, the following constraint is
obtained:

Ixu+Iy6+It=0 (1)

This equation, called the optical flow constraint
equation (Horn & Schunk, 1981), defines the compo-
nent of flow in the direction of spatial gradient (Ix, Iy)
— the normal flow. Other, more elaborate techniques
consider functions of the image intensity or the local
intensity distribution to be conserved. In order to derive
from the normal flow measurements in a neighborhood
the optical flow, a second constraint has to be invoked.
Usually it is assumed that optical flow varies smoothly.
This is achieved by either modeling the flow field explic-
itly as a polynomial in the image coordinates, or model-
ing the smoothness through some function in the
derivatives of the flow values leading to a regularization
formulation (Hildreth, 1984; Horn, 1986; Shulman &
Hervé, 1989).

The estimation of flow then amounts to an optimiza-
tion problem minimizing some function of deviation
from the model; usually, a least squares minimization is
used. The intersection of constraints (IOC) model often
used in the psychological literature is a typical instance
of a smoothness constraint. It assumes the optical flow
to be constant within a neighborhood, an assumption
that is justified within small regions, or if the motion in
view originates in a translation due to a fronto-parallel
plane.

In the modeling conducted here, we employ the
optical flow constraint equation and assume constant
flow within a neighborhood. As the psychological ex-
periments analyzed in this paper are concerned with
translations in the fronto-parallel plane, this model is
approximate and simplifies the exposition. For
combining normal flow vectors into optical flow, we use
the least squares estimation model. We will show, how-
ever, that the bias found in the estimation of flow is not
due to the particular models employed, rather it is
inherent in the geometry of the constraints placed on
combining one-dimensional motion components into
optical flow.

The remainder of the paper is organized as follows:
In Section 2, we discuss the psychophysical studies
detailing the perception of the Ouchi illusion and re-
lated biases in the perceptions of plaid motion. In
Section 3, we analyze an IOC type model to compute
estimates of patch velocity directly from noisy measure-
ments of image derivatives. We then discuss the bias
and provide graphic illustrations of the estimated flow
for the patterns of limited sets of gradient directions
occurring in the psychophysical stimuli. In Section 4,
this analysis is used to explain why local patch veloc-
ities do not combine to form a coherent perception of
pattern motion in the Ouchi illusions and related pat-

Fig. 2. Aperture problem: (a) line feature observed through a small
aperature at time t. (b) At time t+dt the feature has moved to a new
position. It is not possible to determine exactly where each point has
moved to. From local measurements only the flow component per-
pendicular to the line feature can be computed.

terns, and also to explain both coherence judgments
and directional biases in the perception of plaid motion.
Section 5 is devoted to a general discussion of statistical
techniques proposed in the literature on estimation
theory to deal with the noise model used in the analysis
and the inherent problems in applying these techniques
to the problem of optical flow estimation. As will be
shown, correcting the bias would require knowledge of
noise not attainable from a limited set of measurements
of the particular psychophysical stimuli — thus demon-
strating that the bias is not a peculiarity of the particu-
lar computational models we employ. Section 6
discusses the impact of these findings on current models
of motion processing used in the computational and
biological sciences.

2. Psychophysical experiments on motion perception

The striking illusion discovered in 1977 by the
graphic artist H. Ouchi is evoked by a stationary
picture which consists of a checkerboard pattern super-
imposed on another rectangular checkerboard oriented
in orthogonal direction (Fig. 1). Small retinal motions,
or slight movements of the paper, evince a segmenta-
tion of the inset of the pattern, and motion of this inset
relative to the surround. The illusion remains under a
variety of viewing distances and angles. Some observers
report an apparent depth discontinuity, with the center
floating as it moves atop the background (Spillmann,
Tulunay-Keesey & Olson, 1993). Here, we summarize
the findings from psychophysical experiments which
have studied this illusion specifically, and then continue
with results of plaid experiments which attempt to find
general parameters of how local flow measurements are
combined.

Khang and Essock (1997a,b) performed experiments
with a number of variations of the original pattern to
evaluate the impact of various parameters, such as
orientation and size of the pattern elements, luminance,



C. Fermüller et al. / Vision Research 40 (2000) 77–9680

Fig. 3. Variations of the Ouchi pattern used in Khang and Essock (1997b). Patterns were formed by combining two one-dimensional periodic
functions. (a) Rectangular checkerboard composed by multiplying a horizontal square-wave and vertical square-wave function. (b) Sawtooth
pattern composed of the product of a sawtooth-wave and square-wave function. (c) Trapezoidal pattern composed of the product of the
trapezoidal-wave and square-wave function. (d) Triangular pattern composed of the product of a triangular wave and a square-wave function. (e)
Sinusoidal pattern composed of the product of a horizontal sine wave and a vertical sine wave function. (f) Added sinusoidal pattern composed
by adding a horizontal sine-wave and a vertical sine-wave function.

and blurring, on the perceived strength of the illusion.
In most of the figures they used a simplified version of
the illusion with just a one-dimensional square wave
grating present in the inset. We concentrate here on the
first set of experiments in Khang and Essock (1997b),
conducted with only two-dimensional patterns. In these
experiments they replaced the periodic rectangular
checkerboard patterns in the inset and surround by
various other 2D periodic patterns, each composed of
two 1D functions, one of a short frequency and one of
an orthogonal longer frequency.

The particular patterns used, namely the original
rectangular checkerboard, a sinusoidal, a trapezoidal, a
triangular, a sawtooth and an added sinusoidal pattern
are described and shown in Fig. 3. Subjects were asked
to view the patterns freely and rate the magnitude of
the apparent motion; the results of their findings are
displayed in Fig. 4.

The second set of studies (Hine et al., 1995, 1997)
used a simplified stimulus replacing the 2D patterns in
the inset and surround with sinusoidally modulated
contrast gratings of the same spatial frequency. The
two gratings as shown in Fig. 5a were tilted symmetri-
cally about the vertical axis: u/2° to the left and right,
respectively. To give the illusion, this stimulus was
presented moving vertically on a computer screen,
which can be simulated through vertical up-and-down

movements of the paper. The apparent motion of the
inset is seen orthogonal to the grating orientation,
oriented in the direction whose angle with the overall
motion of the paper is less than 90°.

The parameters, which they varied in their figures,
were the spatial frequencies and the angle between the
gratings. With short presentation times preventing the
possibility of tracking motions, they found that the

Fig. 4. Means and standard errors of the magnitude of the motion
illusion as a function of the six different 2D patterns (Khang &
Essock, 1997b).
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Fig. 5. (a) Reduced stimulus in experiments used in Hine et al. (1995, 1997). The surround and inset gratings were tilted symmetrically about the
vertical meridian, each by an angle u/2 from this meridian. (b) Strength of the relative illusion (evaluated by average ratings) as a function of the
angle u and spatial frequency of the stimulus, plotted for each observer. In HV the inset was vertical and surround horizontal. The acute angles
(uB90°) produced a greater illusory effect than obtuse angles.

strength of the illusion of relative motion decreases with
the angle between the gratings, and strong responses
only for angles smaller than 90° and frequencies be-
tween 6 and 12 cyc/deg as shown in Fig. 5b.

Similar findings regarding the dependency on spatial
frequency are reported by Khang and Essock (1997a).
In their experiments with one-dimensional gratings in
the inset, they have found the illusion to be strongest
when the rectangular grid in the surround has elements
with size 20–30 min in width and 4–6 min in height,
which translates into fundamental components of 6.11
cyc/deg in spatial frequency for the mean rectangle

As a possible explanation for the illusion, Hine et al.
(1995, 1997) suggest an anomaly of the visual system in
integrating local velocity signals into a rigid percept —
component motion vectors that differ in direction by
more than 120° stimulate entirely different grating cells
and motion channels and are not combined. Khang and
Essock (1997a,b), cite as a possible cause the interac-
tions between spatially overlapping ON and OFF units
— specifically, saturation and non-linear response
profiles of visual channels responsive to brightness
changes leads to an overall impression of motion. In
particular, there is (a) a non-linear response of channels
responding to luminance change over time, and (b) the
visual system cannot report accurate local pattern in-
tensity if contrast reversals occur abruptly over large

parts of the image. These are distortions of the spatial
and temporal image intensity derivatives — a formal
analysis of the effects of these errors on the integration
of local flow measurements is the focus of this paper.

The integration of local velocity signals has been
studied extensively in the context of understanding the
perception of moving plaids. Plaids are combinations of
two wave gratings of different orientations each moving
with a (typically identical) constant speed. For any such
‘moving plaid’, there is always some planar velocity the
whole pattern can undergo which would produce ex-
actly the same retinal stimuli. However, for particular
variations of the spatial frequencies of the component
gratings, their relative orientations, contrasts or speeds,
human perception is of two separate motions, with one
grating ‘sliding’ over the other. In particular cases, one
can perceive a constant, coherent motion of the pattern,
biased away from the unique velocity which would
account for all retinal signals. Below the findings of a
small number of studies are summarized.

Whether or not a particular plaid pattern is judged to
be coherent depends upon a number of parameters,
such as the contrast, the speed, the spatial frequency
and motion directions of the components. Already in
the first study by Adelson and Movshon (1982), it has
been found that the perception of coherence decreases
as the angle between the motion components perpen-
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dicular to the individual gratings increases, and as the
difference between the spatial frequencies of the grat-
ings increases. Kim and Wilson (1993) gave more quan-
titative results in a study measuring the effects of the
orientations of the gratings (or the motion vectors) and
their spatial frequencies. With a pair of sinusoidal
gratings of frequencies 1 and 6 cyc/deg moving at 3 °/s,
they reported coherent motion when the motion direc-
tions differed by 52° or less, and incoherent motion
when the directions differed by 126° or more. Plaids
with motion vectors 126° apart were consistently judged
to be incoherent for plaids of 1 and 6 cyc/deg, while the
same directional difference led to coherent motion
when the components had frequencies of 1 and 3
cyc/deg.

The motion of a coherent plaid pattern can be theo-
retically computed using the intersection of constraints
model (IOC) — the vector component obtained from
each individual grating constrains the local velocity
vector to lie upon a line in velocity space, the intersec-
tion of the lines defines the motion of the plaid (Adel-
son & Movshon, 1982). Some plaid patterns are
perceived as coherently moving, but with a velocity
different than that predicted by the IOC model. This
bias affects both the direction and magnitude of the
perceived velocity. In the case of Type 1 plaids, that is
where the common motion is between the component
motion of the two gratings, the velocity of the plaid is
biased towards the grating of higher contrast (Stoner,
Albright & Ramachandran, 1990; Kooi, De Valois,
Grosof & De Valois, 1992). For Type 2 plaids, where
the IOC velocity is not between the component direc-
tions (Ferrera & Wilson, 1987), the bias is towards the
average of the component vectors (Ferrera & Wilson,
1991; Burke & Wenderoth, 1993). Plaids comprised of
gratings of different spatial frequencies are also biased
in both direction and length (Smith & Edgar, 1991;
Kooi et al., 1992); for example, plaids with orthogonal
grating are perceived in direction closer to the gradients
of higher spatial frequency than computed by the IOC
model (Smith & Edgar, 1991). In no case is the there an
overestimate of the plaid velocity compared to the IOC
prediction.

Monte-Carlo experiments have attempted to deter-
mine the expected value and variance of velocity calcu-
lated with the IOC method, for the case where the
one-dimensional motion is measured with some Gaus-
sian distributed error (Nakayama & Silverman, 1988a;
Ferrera & Wilson, 1991). Both experiments proceeded
by generating a speed measurement for each compo-
nent direction corrupting this measurement with Gaus-
sian noise, and then computing the IOC prediction
from this pair of constraints. The distribution of esti-
mates created in this method is not biased away from
the IOC motion (Ferrera & Wilson, 1991), and the
variance of these estimates is correlated with the accu-

racy of directional perception (Nakayama & Silverman,
1988a). The next section extends the analysis of the
IOC model to accept more than two noisy local motion
measurements, and finds a bias that is dependent on the
distributions of the local orientations.

3. Analysis of optical flow estimation

We analyze the estimation of optical flow from local
measurements of changes in the image intensity using
least squares minimization of the optical flow constraint
equation. We assume that the flow is constant within
the region of gradient measurements. As input we
consider a set of estimated spatial and temporal gradi-
ent measurements (I. xi

, I. yi
, I. ti

) which are compounded of
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) and noise (nxi
, nyi

, nti
)

I. xi
=Ixi

+nxi
(2)

I. yi
=Iyi

+nyi
(3)

I. ti
=Iti

+nti
(4)

with

I. s=Ã
Æ

È

�
I. xi

�

�
I. yi

�
Ã
Ç

É
and I. t=Ã

Æ

È

�
I. ti

�
Ã
Ç

É
(5)

The optical flow constraint equation relates the locally
image intensity derivatives to the image velocity. As-
suming that the optical flow u= (u, 6) is constant
within the region considered, it thus is described by the
following over-determined system of equations:

I. su+I. t=0 (6)

Solving (6) by a standard least squares estimation for
the flow yields the estimate

û= − (I. sTI. s)−1I. sTI. t (7)

We consider the effects of the following noise model.
The measurement of each image derivative is corrupted
by an additive error, these errors are symmetric random
variables, independent at different image locations, but
with possible dependencies between the spatial and
temporal derivatives at one location. The second mo-
ments of such noise are simply described through a
covariance matrix, with one remark. As the model
should provide measurements which are symmetric with
respect to reflections along the coordinate axes, we
assume the noise component due to correlation between
the spatial and temporal derivatives dependent in sign
on the sign of the derivatives. If one of the derivatives
is positive and the other is negative, such as in the first
quadrant, we assume positive correlation, otherwise we
require sign change. This kind of noise would result if
the derivative operations are carried out by a symmetric
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set of unidirectional derivative operators which are
activated selectively depending on the sign of the gradi-
ents, and thus collectively performing either forward or
backward differentiation.

To obtain a more compressed notation, we also
assume the noise in the two spatial components is
equal. This might be an oversimplification for real
systems, but it does not affect the forthcoming analysis.
This means that the variances and covariances of the
noise components are given as

E(nxi
)=E(nyi

)=E(nti
)=0

E(n ti

2)=s t
2, E(nxi

2 )=E(nyi

2 )=s s
2

E(nxi
nyi

)=0

E(nxi
nti

)=sxti
= −sgn(Ixi

Iti
) · sst

E(nyi
nti

)=syti
= −sgn(Iyi

Iti
) · sst

In the absence of error in the spatial gradient measure-
ments I. s standard least squares methods give an unbi-
ased estimator. The expected value E(u), obtained from
(7), corresponds to the true optical flow u0.

However, errors in this measurement matrix can lead
to a bias such that the expected value of the estimated
flow, E(u), is no longer the true optical flow. The form
of this bias is apparent in the second order Taylor
expansion of the expected value of the least squares
solution as a function of the variance and covariances
of the noise in the measurement matrices. According to
the noise model, the first order terms vanish. Thus, the
only non zero terms that remain in the expansion at
zero noise (n=0) are:

E(u)

=u0+%
i

#2
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where M. =I. sTI. s and b. =I. sTI. s
Algebraic manipulation of the above derivative leads

to an expression of Eu which can be written as a sum
of three components: the true optical flow u0, a compo-
nent which is due to the variance in the spatial deriva-
tive noise only (which we refer to as variant noise), and
a component which originates from the covariance
terms of the noise in the temporal and spatial measure-
ments (which we refer to as covariant noise). The exact
expression is given in Appendix A; its dominant factors
are

E(u)=u0−K1
�%

i

M−1u0
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n
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and M=Is

TIs, the matrix of uncorrupted spatial gradi-
ent values.

The effect of the gradient distribution on the bias of
the computed flow can be interpreted through its effect
on the matrix M−1. In the case of a uniform distribu-
tion of image gradients in the region where flow is
computed, M, (and therefore M−1) are multiples of the
identity matrix, leading to a bias solely in the length of
the computed optical flow. Both the variant term and
the covariant term lead to an underestimation in the
length. In a region where there is a unique gradient
vector, M will be of rank 1, this is the aperture prob-
lem. In the general case, the bias can be understood by
analyzing the eigenvectors of M. As M is a real, sym-
metric matrix, its two eigenvectors are orthogonal to
each other with the direction of the eigenvector corre-
sponding to the larger eigenvalue dominated by the
major direction of gradient measurements. M−1 has the
same eigenvectors as M and inverse eigenvalues. Thus,
the eigenvector corresponding to the larger eigenvalue
of M−1 has a direction dominated by the normal to the
major orientation of image gradients, and the product
of M−1 with any vector is most strongly influenced by
this orientation. This effects the variant term to lead to
an underestimation in the length of the optical flow and
a bias in direction toward the major direction of gradi-
ents (that is, toward the eigenvector corresponding to
the larger eigenvalue of M). The covariant term in most
cases also leads to an underestimation in the length and
its influence on the direction can be either way, toward
or away from the major direction of gradients, depend-
ing on the particular gradient distribution.

The following figures illustrate the bias. Fig. 6 dis-
plays the expected values of the noise terms for a
gradient distribution as it occurs in one of the regions
of the Ouchi illusion shown in Fig. 1 with blocks four
times longer than they are wide. In particular, image
gradients are in two orthogonal directions with four
times as many measurements in the one direction as in
the other. The actual optical flow is along the positive
y axis and of length one and the plots show the change
in the bias as the relative angle between the perpendicu-
lar gradients and the true flow direction varies. The
angle u is measured between the positive x axis and the
direction of more gradients; the other gradient direction
forms an angle u+p/2 with the x axis (see Fig. 6a).
Fig. 6b and c show the error in length and angle due to
the variant term and Fig. 6d and e show the same
errors for the covariant terms. The plots are based on
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the exact second order Taylor expansion as given in
Appendix A.

For such gradient distribution the bias can be under-
stood rather easily. The eigenvectors of M−1 are in the
directions of the two gradient measurements with the
larger eigenvalue corresponding to the fewer gradients.

As u0= (0, 1). the variant term in (9) leads to a bias in
length as shown by the curve in Fig. 6b, which takes its
minimum at 0 and maximum at p/2 (that is, when u0 is
aligned with the major gradient direction). The error in
angle is greatest for p/4 (that is, when u0 is exactly
between the two eigenvectors of M−1) and it is 0 for 0

Fig. 6. (a) Sixteen measurements are in a direction at angle u from the x axis and four measurements are in the direction u+p/2. The optical
flow is along the positive y axis and of length one. (b) Expected error in length of variant term. (c) Expected error in angle due to variant term
measured in radians between the expected flow and the actual flow. (d, e) Expected error in length and angle for covariant term. The error has
values ss=st=0.15 and sst=0.1 · s s

2.
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Fig. 7. Expected length of optical flow and expected error in angle for the gradient distribution and error terms of Fig. 6.

and p/2 (Fig. 6c). Overall, this means the bias due to
the variant term is largest when the major gradient
direction is normal to the flow and is nearly eliminated
when it is aligned with the flow, that is, in the Ouchi
pattern, when the long edge of the block is perpendicu-
lar to the motion. It is always negative in length and
towards the major gradient direction.

Regarding the covariant term, as K2i
in (9) is con-

stant within the range of 0 to p/2 and the vectors (sgn
(sxti

), sgn (syti
)) are along the first and second merid-

ian, the covariant term can be written as KM−1a, with
K a positive constant and a=4(1, 1)+ (−1, 1)= (3, 5).
This leads to error functions, as shown in Fig. 6d and
e which appear to be shifted to the left of the u axis
with regard to the variant bias. This bias is always
negative in length and mostly toward the minor gradi-
ent direction. The bias for angles u between p/2 and p

is obtained from the above plots by reflecting the curves
upon p/2 and changing the sign for the error in angle
(such that the variant bias is always toward the major
and the covariant term mostly toward the minor
direction).

To see the combined effect of the error terms, Fig. 7a
and b show the expected length of the estimated flow
and the error in angle for the same configuration as in
Fig. 6. As we expect the covariant to be much smaller
than the variant term, the graph is mostly determined
by the latter.

Fig. 8 illustrates the measurements of component
motions in the reduced Ouchi stimulus or symmetric
plaids. The two gradient directions are symmetric with
regard to the y axis (the direction of motion) with the
angle 8 measured between the direction of more gradi-
ents and the x axis (Fig. 8a). The correct pattern
motion is of length one, and the bias varies depending
on the gradient distribution in each receptive field. For
a receptive field which has more measurements in right-
ward component direction, simulating a receptive field
receiving more input from the outset of the pattern
than the inset, Fig. 8 shows the bias relative to the optic
flow direction. The same relative number of measure-

ments would come from a plaid pattern made from
components of different frequency. The full explana-
tion, in the next section, involves this bias in addition
to a segmentation process which also can be explained
statistically.

4. Explanation

The previous analysis underlies the nature of the
Ouchi illusion. The relative angles between the real
motion and the predominant gradient direction differ in
the inset and the surround, so the regional velocity
estimates are biased in different ways. When, instead of
freely viewing the pattern of Fig. 1, the page is moved
in different directions, we observe that the illusory
motion of the inset is mostly a sliding motion orthogo-
nal to the longer edges of the rectangle and in the
direction whose angle with the motion of the paper is
less than 90°. Using Fig. 7, it can be verified that the
projection of the vector resulting from the difference of
the bias vector in the inset and the bias vector in the
surrounding area is, for almost all angles in this direc-
tion. For example, when the motion is along the first
meridian (to the right and up), the bias in the inset is
found in the graph at angle u=p/4 and in the outset at
u=3p/4. The two bias vectors are of about the same
length, each in direction towards the gradients of the
longer edge, and the resulting projection of difference
vectors is to the right. If the motion of the paper is to
the right, the difference in bias vectors is mostly due to
length resulting in a perceived motion to the right, and
if the motion of the paper is upwards, the difference
vector is downwards. Its projection on the major gradi-
ent direction of the inset is close to zero and thus
hardly any illusory motion is perceived. Fig. 9 shows,
for a set of true motions, the biases in the perceived
motion. The three bias fields were created with a variety
of noise magnitudes, receptive field sizes, and covari-
ance between the noise in the gradient measurements to
show the robustness of the effect.
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We assume that in addition to computing flow the
system also performs segmentation, which is why a
clear relative motion of the inset is seen. When experi-
encing the Ouchi illusion under free viewing conditions,
the triggering motion is due to eye movements which
can be approximated through random, fronto-parallel
translations. As the difference in the bias vectors of the
inset and surround has a significant projection on the
dominant gradient direction of the inset for a large
range of angles (that is, directions of eye movements)
the illusion is easily experienced.

In the figures of Khang and Essock (1997b), patterns
were used which have more than just two spatial gradi-
ent directions. From the rectangular to the sawtooth,
the trapezoidal, the triangular, and the sinusoidal to the
added sinusoidal, there occurs an increase in the range
of gradients. With the spreading of directions, the
amount of bias in the estimated flow decreases, as
shown in Fig. 10, which explains the decrease in the
perceived illusory motion found in the experiments.

In the reduced Ouchi illusion (Hine et al., 1995, 1997)
the inset and surround regions are each sine-wave grat-
ings of the same frequency, oriented in different direc-
tions (Fig. 5); solving for the pattern motion requires
combining measurements from both the inset and the

surround. We assume that there are receptive fields
which are large enough to cover both the inset and
surround and derive flow from gradient measurements
in both orientations. The relative amount of each orien-
tation used in computing a particular value of the flow
affects the amount of bias in the final estimate. If, for
example, the flow in each region is derived from input
which has four times as many gradients from its own
region than from the other region, the bias corresponds
to the one shown in Fig. 8. Different receptive fields
will have different relative inputs from each region; we
show a 4-1 ratio to allow comparison to the case when
gradient directions are perpendicular. Each region gives
flow estimates biased by the same amount in length and
(for all angles of interest) in direction toward the gradi-
ent direction in that region. The projection of the
resulting difference vector on the gradient direction of
the inset is in the direction whose angle with the overall
motion is less than 90°. From Fig. 8 it can be seen that
the bias in direction decreases with increasing 8. Fur-
thermore, the angle between the difference vector and
the gradient direction of the inset increases, causing a
decrease in the size of the projection. Thus, an increase
in 8 (or equivalently, the angle between the gratings)
will cause a decrease in the strength of the illusion.

Fig. 8. (a) Gradient motions in symmetric diagonal directions; for a receptive field with four times as many measurements in the rightward
component direction, (b, c) give the expected length of optical flow and the expected error in angle due to both variant and co-variant terms. The
noise has values ss=st=0.1 and sst/s s

2=0.05, 0.1 and 0.2.
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Fig. 9. The regional motion error vector field. The vectors shown are the difference between the true motion and the calculated motion. To derive
the sliding motion, compute the difference of the error in the inset minus the error in the surrounding and project the resulting vector on the
dominant gradient direction in the inset. One block is shown to show the relative orientation for the inset and the outset of the illusion, the width
of the block gives the relative number of vertical and horizontal gradient measures. The line from the center is the direction of the true motion.
The noise is Gaussian and the spatial gradient magnitude is one. In (a) and (b), ss=st=0.1 and there is no covariance; in (c) ss=st=0.2 and
sst=0.2 · s s

2.

In addition, segmentation processes must be per-
formed which are responsible for the detection and
localization of motion boundaries as well as the group-
ing of single velocity estimates within the motion
boundaries into coherent flow regions. A possible mea-
sure used in the segmentation is the residual of the least
squares solution. The residual is an indicator of how
well the computed flow within a neighborhood satisfies
the constraints (that is, the optical flow constraint
equation). In the absence of noise, the least squares
solution of any set of component motions deriving
from a single pattern motion will be zero, but in the
presence of noise, the residual due to a pattern may be
indistinguishable from the residual of a solution when
measurements are combined from entirely different pat-
tern motions. This is the case if the values of the
residual across different regions are compared and most
regions involve only a single orientation.

Fig. 11 shows the residual of the least squares solu-
tion for the configuration of Fig. 8 for different recep-
tive field sizes — the residual takes on a much smaller
value in regions where the receptive field only gets input
from one component direction. A small receptive field
gives a more clear demarcation of where no optical flow
fits well with the measured constraints, it is more
difficult to localize the boundary with a broader recep-
tive field, which provides an explanation for the depen-
dency of the strength of the illusory perception on the
spatial frequency as found in Hine et al. (1995, 1997)
and Khang and Essock (1997a).

The experimental results find the inset to be seg-
mented consistently for grating frequencies between 6
and 12 cyc/deg (Hine et al., 1995, 1997). The degrada-
tion of the illusory perception for higher frequencies is
easily explained by the sensitivity exhibited by the
human visual system. For grating speeds, as used in
these experiments, ranging from 0.2 to 2 °/s (the com-

ponent speed changes with the relative angle of the
inset and surround), the human visual system is sensi-
tive to spatial frequencies between approximately 0.5
and 14 cyc/deg (Kelly, 1979). The degradation for lower
frequencies can be explained by the variation of recep-
tive field size of cells in the visual pathway responding
to gradients of different frequencies. As shown in Fig.
11, the size of the receptive field changes the accuracy
with which a boundary can be detected. Whereas high
frequencies and thus small receptive fields give rise to a
sudden spike in the residual magnitude indicating a
likely motion boundary, low frequencies perceived with
large receptive fields lead to extended regions of in-
creased magnitude and thus the position of the
boundary is much less clear and segmentation is not
induced.

The dependency of the residual value on the gradient
direction also is in agreement with the experimental
data (Hine et al., 1995, 1997). The residual within
regions of more than one gradient direction is largely
unaffected by the particular gradient distribution, but
the residual in regions of single gradients decreases with
the angle between the actual motion and the gradient,
and this effects the ratio of residuals across different
regions. Fig. 12 presents the ratio of the background
residual to the residual of a receptive field on the
boundary; all points are computed with a Monte Carlo
simulation adding Gaussian noise to the derivative
measurements, points marked with ‘X’ and ‘Y’ show
component motion angles tested in the reduced Ouchi
stimulus (Hine et al., 1995). This ratio, too, gives a
clear separation (on the y-axis) of the stimuli that were
judged to be coherent (those whose orientation differ-
ence was less than or equal to 45°), and those that led
to a segmentation.

The full explanation for the reduced Ouchi stimulus,
which is described in Hine et al. (1995, 1997) as ‘a
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sliding motion of the inset grating with respect to the
surround grating’, entails a combination of biased
smoothing and segmentation on the basis of the resid-
ual. As will be further elaborated on in Section 6, we
envision (Fermüller, Pless & Aloimonos, 1997b) that
smoothing and segmentation (together with the pro-
cesses of motion and shape estimation) are carried out
in a feedback fashion, with the localization of motion
boundaries succeeding the smoothing of motion vectors
and the grouping into coherent regions following local-
ization. Therefore, the segmentation does not cancel
out the results of the smoothing. For higher spatial and
temporal frequencies the smoothing becomes less im-
portant. When moving the pattern of Fig. 5 very fast
and keeping fixation on the surround the perception
appears to be less than that of a sliding of the inset but
more than that of two different motions, one in the
inset and another one in the surround, each in the
gradient direction of its grating. This also can be ex-
plained by the model. As for high frequencies the
receptive field sizes of the cells employed are small,
smoothing does not take a significant role and the
velocity vector in each area is derived from a single
orientation, and is thus in the direction of the normal
flow.

Regarding the experiments on the judgment of coher-
ence and non-coherence in moving plaids, we assume
that the system, in addition to computing optical flow
from the normal flow vectors of the individual gratings,
can also derive information about the changes of posi-
tion of the intersection points of the two gratings and
can compare the estimated flow to the estimated mo-
tion of the intersection points. As can be seen from Fig.
8, with the actual motion between the two gradient
motion components, a bias is obtained which decreases
with 8. The effects of different frequencies can be

modeled as different numbers of measurements in each
direction. Fig. 13 illustrates the dependency of the bias
on the ratio of gradient measurements in the two
directions for a configuration similar to the one in Fig.
8, and it demonstrates that the bias increases as the
ratio of the major to minor gradient directions in-
creases. The larger the bias, the larger the discrepancy
between the motion of the intersection points and the
optical flow, which explains why the perception of
coherence decreases with the angle between the motion
components of the gratings and the difference between
their spatial frequencies, as found in Adelson and
Movshon (1982) and Kim and Wilson (1993).

For plaid patterns that are perceived as coherent, we
can predict the bias in the perceived direction. Recalling
that the plaid velocity is biased in direction toward the
eigenvector corresponding to the largest eigenvalue of
M, we can directly map changes in the plaid pattern to
the expected bias. If the contrast of one component
sine-wave grating increases, the major eigenvector
moves towards the direction of motion of that compo-
nent. For components of equal contrast and frequency,
the major eigenvector is close to the vector average of
the component motion vectors. In type II plaids, where
both component motion vectors are on the same side of
the IOC motion, this gives a bias towards this vector
average direction. Different frequencies amount to dif-
ferent numbers of measurements in each direction; this
also changes the direction of the major eigenvector. In
the case of orthonormal grating, as in Smith and Edgar
(1991), the larger eigenvector is in the gradient direction
of higher spatial frequency, and thus the estimated flow
of the plaid should be closer in direction to the motion
of the higher spatial frequency grating than predicted
by the IOC model.

Fig. 10. Expected length of optical flow and expected error in angle for the following three gradient distributions. (a) Rectangular checkerboard
pattern in 16 vectors in major and four vectors in minor gradient directions. (b) Twelve vectors in major direction, two vectors each at 10° and
20° to the left and right of major direction, two vectors in minor direction, (90° from the major) and two vectors at 10° to the left and right of
the minor direction. (c) Approximation to distribution of gradients of the function f(x, y)=sin(x) · sin(5y). The optical flow is (0, 1) and
ss=st=0.15. With an increase in the spread of gradient directions, a decrease in the amount of bias occurs.
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Fig. 11. Residual error of the least squares solution, when combining measurements in a small receptive field (a) and a much larger receptive field
(b).

5. Correcting the bias?

In the statistical literature the model we used to
describe the estimation of flow is referred to as the
classic ‘errors-in-variable’ (EIV) model. It is usually
expressed in the notation Ax=b with A=A0+dA and
b=b0+db where A0 and b0 are the true but unobserv-
able variables (in our case the actual spatial and tempo-
ral derivatives Ixi

, Iyi
, Iti

, at points i), dA and db are the
measurement errors, A and b are the corresponding
observable variables and x the unknown parameters to
be estimated (in our case u and 6).

It is well known from the literature that estimation
with least squares (LS) generally provides an inconsis-
tent and biased estimate of the true parameter x. The
LS estimator gives an unbiased solution only for the
regression model, that is, when dA is considered to be
zero and measurements db are independent, zero mean
and equal distributed. The literature on estimation the-
ory also provides a wealth of information on techniques
dealing with the EIV model and how to compensate for
the bias. However, it is very difficult to apply these
techniques to flow estimation. In many situations, theo-
retically it should be possible to improve upon the
estimation, but the particular stimuli discussed here
pose problems for any statistical procedure.

Before going on, let us clarify one point. The as-
sumption of constant flow is strictly true only for a
scene consisting of a fronto-parallel plane moving with
translation parallel to the image plane. In general, the
motion field on the eye of a moving system depends on
the 3D motion and the scene in view and is much more
complex. Thus, to cope with general motions and
scenes, the processing of flow has to be carried out in
several stages. In a first stage, normal flow measure-
ments should only be combined very locally to generate
an estimate of optical flow in a small patch of the

image. In following stages, flow measurements of neigh-
boring patches can be compared to find larger regions
of common 3D motion or to delineate motion
boundaries. These considerations exclude models which
assume that the motion component in each direction is
computed over very large areas and then the single
components are combined into a common 2D motion
estimate with the simple IOC rule. Such models would
not lead to biased optical flow estimates; however, they
are of very limited applicability.

Any statistical technique to compensate for the bias
requires knowledge of the statistics of the noise. For the
noise model considered in the previous sections, this
means knowledge of the covariance matrix of the noise
vector (nx, ny, nt). If such is available, the bias in the
least squares estimation could be removed. If the model
of constant flow is valid, this can be achieved with the
‘corrected least squares’ estimator. If a more compli-
cated model of general smooth flow within an image
patch is necessary, iterative techniques have to be
employed.

However, the major problem lies in the acquisition of
the statistics of the noise. The noise parameters are not
constant, but they change spatially and temporally in
complex ways. They depend on many factors, such as
the lighting conditions, the physical properties of the
objects being viewed, and the orientation of the viewer
in 3D space. Thus, usually there is only a limited
amount of data to obtain the noise parameters, and this
makes it very difficult to obtain good estimates. This is
true even for the simple model used here, because the
variance in the motion estimates turns out to be large
with respect to the bias. For example, in simulations
(see Fig. 14), it has been found that for a noise level of
10% (that is, ss=st=10% of the value of the spatial
gradient and the length of the flow) the standard devia-
tion is twice as large as the bias. Thus, correction, even
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with an accurate estimate of the bias, in many cases
would lead to a worsening of the solution.

In the particular situation of the Ouchi illusion, the
3D motion (either due to random eye movement or
jiggling motion of the paper) changes rapidly. This
makes the temporal integration of measurements very
difficult as the system has only a short time-span to
obtain the noise parameters.

In recent years the nonlinear estimator of ‘total least
squares’ has received a lot of attention and it has also
been applied to the problem of flow estimation (Wang,
Markandey & Reid, 1992; Weber & Malik, 1995). This
estimator has been shown to provide an asymptotically
unbiased solution for the EIV model in the case of
white noise, that is, if the noise values are independent,
and identically distributed. To whiten the noise, how-
ever, again it is necessary to obtain the covariance
matrix up to a scale factor. Without whitening, total
least squares also gives biased solutions. In addition,
total least squares is known to perform very poorly if
outliers are present, and these are difficult to detect
from few measurements.

The estimation and interpretation of optical flow
from a statistical point of view has received attention
before in the computational literature (Heeger, 1988;
Szeliski, 1990; Simoncelli, Adelson & Heeger, 1991;
Daniilidis, 1992; Weber & Malik, 1995; Daniilidis &

Spetsakis, 1997). It has been pointed out in Nagel
(1995) and Nagel and Haag (1998) that optical flow
estimated using gradient methods is biased. In these
studies the bias is interpreted only with regard to the
underestimation in the length of the flow; but as shown
here the direction of the flow is affected by the bias as
well. Also, what is not emphasized there is that it is
hard in practice to correct for the bias.

From a computational point of view, the problem of
flow estimation is very difficult. In order to obtain very
accurate flow estimates, a sufficiently large number of
normal flow measurements is necessary. This means
that data has to be spatially and temporally integrated
via further computational models. As such computa-
tional models are based on assumptions about the 3D
motion and the scene in view, they are not generally
valid for systems moving in varied environments. The
integration is possible only in image patches where the
data is approximated well by the model. Thus, for the
system to use a certain model, it first has to test its
validity. For example, in order to employ a model of
smooth flow within a spatiotemporal neighborhood, the
system has to check for discontinuities in a spatial
neighborhood, verify that the flow doesn’t change
abruptly between frames and evaluate how well the
flow is approximated by the particular model used.
Clearly, these computations cannot be carried out on

Fig. 12. Ratio of background residual to boundary residual for the configuration of Fig. 8a and noise ss=st=0.1 and sst=0. ‘Y’ denotes angles
that led to the illusion and ‘X’ angles which did not.
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Fig. 13. Expected length of optical flow and expected error in angle for gradient distributions with measurements in the ratio (6:1, 3:1 and 1:1)
at angles 8 and p−8 from the x axis. The actual flow is along the y axis and of length 1. For the symmetric distribution (in the ratio 1:1), no
error in angle occurs.

the basis of one-dimensional image velocity measure-
ments alone, but require further spatiotemporal 3D
information.

6. Computational models of motion processing

The current view which dominates the modeling in
the computational sciences as well as research in
anatomy, physiology and psychophysics, is that the
computation of optical flow is accomplished prior to
any other computations involving image motion mea-
surements. First, the optical flow is computed, then it is
used to perform other processes, such as 3D motion
estimation, segmentation and shape estimation.

Studies in neurophysiology have mapped much of the
organization and functional properties of neurons in-
volved in the early stages of motion processing. Evi-
dence suggests that in the primate cerebral cortex the
estimation of locally computable one-dimensional mo-
tion occurs in the primary visual cortex (V1). There,
motion-sensitive neurons with small receptive fields
tuned to a specific size and orientation have been
found. These cells respond maximally to the direction
of motion perpendicular to the cells’ preferred orienta-
tion (Hubel & Wiesel, 1968; de Valois, Yund & Hepler,
1982).

V1 neurons project onto the middle temporal (MT)
area where most neurons appear to respond preferen-
tially to motion (Zeki, 1974; Maunsell & Van Essen,
1983). Neurons in this area have considerably larger
receptive fields and, in general, the precision of selectiv-
ity for directions of motion is less than in V1. MT-neu-
rons feed further motion processing modules, namely
FST and MST where neurons with much larger recep-
tive fields have been found which respond to particular
3D motion configuration (Ungerleider & DeSimone,
1986; Duffy & Wurtz, 1991a,b; Orban, 1992). The most

commonly found interpretation is that optical flow is
computed in MT, that is, the neurons there integrate
the one-dimensional edge motion signals derived in V1
to compute two-dimensional pattern velocity
(Movshon, Adelson, Gizzi & Newsome, 1986; Heeger,
1987; Rodman & Albright, 1989; Movshon, 1990), and
this information is sent to higher-level areas to solve
navigational tasks.

However, current biological findings don’t provide
sufficient conclusive evidence as to whether optical flow
is computed first, or two-dimensional pattern motion is
derived in a combined fashion with 3D motion estima-
tion, segmentation and shape estimation.

Computational considerations suggest that the sec-
ond approach is advantageous over the first one. On
the one hand, the estimation of optical flow and the
detection of discontinuities seem to be intricately cou-

Fig. 14. Expected error in value of length (solid lines) and standard
deviation (dotted lines) obtained by a Monte Carlo simulation using
Gaussian noise for three different standard deviations: ss=st=0.2,
0.1 and 0.05. The optical flow is (0, 1), the magnitude of the spatial
gradients is one, and gradients are distributed with 15 vectors in the
direction at angle u from the x axis and five vectors at angle p/2+u.
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pled problems, each difficult to solve by itself. Without
knowing the locations of discontinuities, it is hard to
estimate flow there, but in order to detect the disconti-
nuities information about optical flow within neighbor-
hoods is needed. On the other hand, as shown in the
preceding analysis, it is for statistical reasons very
difficult to obtain accurate optical flow estimates —
even within areas of smoothly changing flow. Theoreti-
cally, to achieve good flow estimation it is necessary to
integrate motion information from large neighbor-
hoods. This, however, requires detailed models of the
flow field which can only be obtained from additional
3D information. Specifically, this means that knowledge
about the discontinuities, the shape of the scene in
view, and the 3D motion is necessary.

The only remedy to this chicken-and-egg situation
lies in performing the computations of the different
processes simultaneously. One can envision an architec-
ture which carries out the computations in a feedback
loop. First, approximate image velocity is estimated by
combining normal flow measurements. The representa-
tion of these estimates does not necessarily have to be a
quantitative one, but could be in the form of qualitative
descriptions of local flow field patches or bounds on the
flow values. The flow computed this way is used to
obtain partial shape estimates and perform discontinu-
ity detection, and at the same time an estimate of 3D
motion is derived. Then, the computed 3D information
is fed back to utilize it together with the image mea-
surements to perform better flow estimation, disconti-
nuity localization, and improve upon 3D motion and
structure estimation.

However, even with the best computations, it cannot
be guaranteed that optical flow will be estimated accu-
rately all the time, and this has to be taken into account
when conducting visual navigation processes. Most
computational models assume generically computed
flow which is used to obtain accurate 3D motion and
metric shape estimation. Consideration of the computa-
tional difficulties calls for more purposive computa-
tions. Depending on the particular computation of 3D
information, different representations of flow may be
derived. For example, instead of attempting accurate
egomotion estimation from optical flow, the approxi-
mate directions of translation and rotation can easily be
obtained from patterns of the sign of normal flow
(Fermüller & Aloimonos, 1995a). Instead of recon-
structing the scene in view, it is computationally more
feasible to derive less powerful shape representations
sufficient for particular tasks, for example, representa-
tions, which only describe the qualitative shape of scene
patches, or only allow an ordering of scene elements
with respect to their depth value (Fermüller & Aloi-
monos, 1995b; Fermüller, Cheong & Aloimonos,
1997a). Also, instead of attempting segmentation
straightforwardly from image measurements, segmenta-

tion may be conducted only in conjunction with other
tasks.

7. Conclusion

We have shown in this paper the problems of esti-
mating two-dimensional image velocity from local one-
dimensional motion measurements from a statistical
point of view. As noise affects local motion measure-
ments, that is, normal flow vectors, in both length and
direction, the estimation of optical flow is biased. Theo-
retically, the design of any unbiased estimator would
require knowledge of the statistics of the noise which
often is hard to obtain. To model the computation of
optical flow we used linear least squares estimation and
showed that this model explains a number of psycho-
physical experiments; in particular, the Ouchi illusion,
experiments with variations of this pattern, and studies
on the perception of plaid motion.

Although it long has been known that the estimation
of optical flow is a very difficult problem — and if
formulated in the classic way, an ill-posed one — this
paper for the first time points out the inherent compu-
tational problems. The insight gained from this study
calls for a reevaluation of the role of flow estimation in
3D motion processing.

Appendix A. Expected value of least squares flow
solution

In this section we explicitly derive the second order
Taylor expansion for the expected value of the least
squares flow solution as a function of the variance and
the covariance of the noise.

The expected value E(u) amounts to

E(u)=E(−I. sTI. s)−1(I. sTI. t)

As the noise is considered independent at different
points and E(nxi
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#nyi

2

)
n=0

E(nyi

2 )
2

+
#2û
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and rewrite the expected flow as:

E(u)=E(−M. b. )

To express the correlation between the spatial and
temporal derivative noise we introduce the symbols rxi

and ryi
with

rxi
=

sxti

ssst

and ryi
=

syti

ssst

and write the noise terms in a linear approximation as
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where K1i
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are noise variables independent of nti
,

and K3i
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noise variables independent of nxi
and
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, respectively, that will not be used explicitly.
To compute the partial derivatives, the explicit terms
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Using the fact that for an arbitrary matrix Q,
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we find the first order derivatives to be
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and a similar, symmetric expression for #û/#nyi
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The bias in the expansion is actually due only to the
second order terms. As they become very long, we will
write them out piecemeal.
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If we make the assumption of symmetry in the error
distribution of the measurements of the x and y deriva-
tives of image intensity, the expansion can be simplified
to:
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where we mark by underlining the terms that diminish
proportionally to 1/n (where n is the number of mea-
surement being combined in a region). The sum of all n
such terms will give a consistent, statistically constant
response. The rest of the terms diminish proportionally
to 1/n2. Informal experiments shows the sum of these
terms to become negligible for n\5, a number clearly
smaller than the number of terms likely to be combined
in any real system.
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