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When processing image sequences some representation of image motion must be
derived as a first stage. The most often used representation is the optical flow field,
which is a set of velocity measurements of image patterns. It is well known that
it is very difficult to estimate accurate optical flow at locations in an image which
correspond to scene discontinuities. What is less well known, however, is that even
at the locations corresponding to smooth scene surfaces, the optical flow field often
cannot be estimated accurately.

Noise in the data causes many optical flow estimation techniques to give biased
flow estimates. Very often there is consistent bias: the estimate tends to be an un-
derestimate in length and to be in a direction closer to the majority of the gradi-
ents in the patch. This paper studies all three major categories of flow estimation
methods—gradient-based, energy-based, and correlation methods, and it analyzes
different ways of compounding one-dimensional motion estimates (image gradients,
spatiotemporal frequency triplets, local correlation estimates) into two-dimensional
velocity estimates, including linear and nonlinear methods.

Correcting for the bias would require knowledge of the noise parameters. In many
situations, however, these are difficult to estimate accurately, as they change with
the dynamic imagery in unpredictable and complex ways. Thus, the bias really is a
problem inherent to optical flow estimation. We argue that the bias is also integral to
the human visual system. It is the cause of the illusory perception of motion in the
Ouchi pattern and also explains various psychophysical studies of the perception of
moving plaids. © 2001 Academic Press
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1. THE PROBLEM

1.1. Errors Matter

A serious problem with optical flow computation is that the flow must be estimated usi
noisy data, and it is often not possible to accurately estimate the noise parameters. Bec
there is noise, the estimated and the actual flows can be different. Worse, the estimate «
is biased; the expected value of the difference between the actual and estimated flow i
zero. Confidence limits are also difficult to predict, and they matter because the varianc
the flow can be large.

It will be shown here that many commonly used methods for computing optical flo
are biased. It is difficult to correct for this bias because it is difficult to estimate the noi
parameters. It might be possible if the parameters were static, but instead they chanc
unpredictable and complex ways. If we had enough data, we could use various statis
techniques to estimate the parameters; for example, we could use maximum likelihood.
when we first view a scene, there is not enough data. When the environment changes, v
the lighting conditions have changed recently or there has been a significant recent ch:
in orientation which produces a change in the accuracy of the constraint that correspon
points have the same intensity, there is not enough data about the current values of the |
parameters.

In this paper we analyze all three major classes of optical flow algorithms: gradie
methods, frequency-domain methods, and correlation methods. We analyze both lineat
nonlinear estimation techniques, as well as some robust methods. In some of our anal
we do not make either a Gaussian or an asymptotic assumption.

1.2. Bias

There has been previous work on optical flow that analyzes error. Examples are |
34, 39, 45]. However, it has not been widely noticed by the computer vision commun
that optical flow estimates can be biased. It has been pointed out in [30] that optical fl
estimated using gradient methods is biased: estimates tend to be underestimates. As we
show here, even the estimates of the direction of flow are not unbiased. We also demons
here that it is not just gradient methods that result in biases. The mathematics of freque
domain methods is not very different than that of gradient methods and similar biases al
Finally, we present a model that shows how even correlation methods can be biased and
toward underestimation. Thus all these methods produce biases. It is not often appreci
how difficult these biases are to correct.

We conclude by arguing that more robust and more qualitative methods should be u
for estimating optical flow and that the estimation of optical flow should be combined wi
the estimation of three-dimensional information.

1.3. Optical lllusions

The inevitability of bias provides an explanation of certain well-known optical illusion:s
In particular, we provide a computational model for the Ouchi illusion.
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FIG.1. A pattern similar to one by Ouchi [31].

The striking illusion discovered in 1977 by the graphic artist H. Ouchi consists of tw
black and white rectangular checkerboard patterns oriented in orthogonal directions
background orientation surrounding an inner ring (Fig. 1). Small retinal motions, or slic
movements of the paper, evince a segmentation of the inset pattern and motion of the |
relative to the surround. The illusion occurs for a variety of viewing distances and angl|
Some observers report an apparent depth discontinuity, with the center floating as it ma
above the background [36].

Our explanation of the illusion lies in the estimation of differently biased flow vectors |
the two patterns. Because of the sparse spatial frequencies in these checkerboard pa
the bias is highly pronounced. In the following two different 3D motions are derived whi
cause the inset to move relative to the surround. Our model for explaining this illusior
given in Section 4 along with a set of illustrations.

1.4. A Formulation of the Flow Estimation Problem

The rest of this paper is a detailed exploration and examination of the themes mentic
above. In order to proceed further, it will be necessary to discuss in somewhat more techt
detail exactly what is meant by flow and the kinds of methods for estimating flow that \
are interested in analyzing.

It is assumed that a sequence of two or more images of a scene is available. If in the
world, whatever is at poinP; at timet; is found at pointP, at timet,, and pointp; is the
image of real-world poin®, in imagei, then image pointg; and p, will be said to be
corresponding points.

A basic assumption is that there exists some attribute that has the same adlthe
two corresponding image pointp;, p. The valuel might be the intensity of light at a
point p in the image or the intensity of light of a given frequency. Bunight also be
something somewhat less local, such as the (weighted) average value of light intensi
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some regiorR of the image. In computing the average, points that are neargshtwe
the most weight. The valuke might be assumed exactly known, bmight be modeled
as being measured with a certain amount of error. The error may often be very large,
it is assumed that the value bfis the same at corresponding points and that this value |
known with reasonable accuracy at a significant number of points. (Later we discuss I
general constraints where this at corresponding points are not equal, but instead there is
linear relation between the valuesloht corresponding points.) Of course, despite the lon
tradition in computer vision of assuming exactly equal values at corresponding points, tt
is no meaningful physical quantity that is going to have exactly the same value at two c
responding points. But the statistical modeling below will take into account error in t
constraint and realize that some of the error is due not to noisy observation but to imper
constraint. Given the difficulty of making locally accurate flow estimations and the lart
amount of noise involved in any case, it is reasonable to work with the assumption of eg
| at corresponding points.

If p1 at timet; and p, at timet, are corresponding points, there is a two-dimensiona
motion fromp; to p,. It makes sense to speak of the velocity of this motion. If the differenc
between the times andt; is infinitesimal, one speaks of the instantaneous two-dimension
velocity or optical flow.

The constraint that some attribute have the same value at corresponding points is
enough. Other constraints must be employed in order to actually estimate flow. Th
additional constraints usually amount to models of the 2D velocity field, for exampl
constraints on the sizes of the derivatives, or parametric models of the velocity field.

To simplify the analysis, initially we will focus on the simplest special case where tt
flow is the same at all positions in the image or at least constant in some large region of
image. To further simplify matters, it will be assumed that special problems due to the f
that certain pixels are near the boundary of an image can be safely ignored.

1.5. Methods of Computing Optical Flow

There are three primary classes of methods for computing optical flow: gradient-ba
methods, frequency-domain methods, and correlation methods. Gradient-based
frequency-domain methods derive optical flow in two separate stages: first, informat
about the one-dimensional motion components of local edges or single spatial frequen
is obtained; then, the individual measurements within some neighborhood are combi
into an estimate of optical flow. These two classes of methods are faced with similar nc
issues and thus can be given a very similar mathematical analysis. Correlation technic
perform region-based matching and in general cannot be separated into one-dimension:
two-dimensional components. Thus, they will be given a separate analysis that is some\
different, but not very different.

Gradient-based techniques [8, 22, 40, 44] compute the spatial and temporal derivative
the intensity or functions of the intensity. These measurements define atindividual points
component of flow perpendicular to edges, the normal flow. To derive these measurem
the images are usually smoothed in space and time with low-pass filters and numerical
ferentiation is performed. Then the optical flow is computed from the local one-dimensiol
measurements in a neighborhood using assumptions about the smoothness[9, 21, 22, 2
41] or an explicit model (such as polynomial) of the underlying flow field. The estimatic
amounts to solving an optimization problem minimizing some function of deviation frot
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the model; if the flow field is assumed to be constant, least squares or weighted least sqL
estimation is often used [25, 34], but other techniques such as total least squares [4-
robust techniques, can alternatively be used. If more elaborate smoothness assumptiol
employed, iterative techniques must be used.

Energy-based techniques [1, 2, 4, 20] are based on the constraint that all the enert
a translating pattern lies in a plane through the origin in spatiotemporal frequency sp:
Usually, the energy for a number of spatial and temporal frequency triplets is extractec
means of spatiotemporal energy filters of different kinds. Computationally this results
taking a local Fourier or related transform and it requires some smoothing and interpola
either in space-time or in the frequency domain. Since energy can only be extracted wi
regions, the implicitassumption is that the flow field is constant within the range of the filte
The fitting of the plane to the estimated energy responses again amounts to an optimiz:
problem which can be solved by linear estimation, but more often is addressed using 1
least squares estimation.

Another approach to flow estimation in frequency space is based on the assumption
phase is preserved [14]. In this case the phase response for spatiotemporal frequenc
computed using energy filters and then the spatial and temporal derivatives of the phas
estimated to obtain one-dimensional motion components.

Correlation techniques [6, 7, 26, 47] have mostly been used in the processing of st
images where one component of the displacement is defined by the epipolar constraint a
establish sparse feature correspondence when far-apart views obtained by a moving ce
are considered (discrete motion). They have also been used to derive dense correspon
fields and optical flow fields. Correlation techniques compare regions of usually large ex
in the two images to find the displacement between the regions which provides the |
match. A measure of similarity is computed between regions centered at discrete (pi
locations and the exact displacement is then estimated by interpolation between the dis
positions. Similarity may be measured using cross-correlation, which may be normaliz
or using a distance measure such as sum-of-squared-differences. It is then necessary 1
the displacement that maximizes the correlation or minimizes the distance measure
considering large matching regions it is implicitly assumed that the correspondence fiel
constant, and the aperture problem is circumvented in this way. There are also correlz
techniques for flow which match small image regions and thus face the aperture probl
In this case local correlation surfaces are combined via smoothness constraints to esti
the optical flow field [3, 35].

2. GRADIENT-BASED AND FREQUENCY-DOMAIN METHODS

Gradient-based methods and frequency-domain methods use essentially the same
straint; the frequency-domain constraint can be obtained from the gradient constrain
taking a Fourier transform. For both methods the constraintis encoded as an overdetern
system of noisy linear equations. There are many techniques for solving such a syste
equations. Many different approximations can be employed. Many different methods e
for handling the noise. But in any case, there will be a noise term that comes from an
accurate estimate of the spatial derivatives and a noise term that comes from an inacc
estimate of the temporal derivative. The bias will arise because we cannot obtain a g
estimate of the ratio of these two noise terms.
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We proceed by providing a general framework for the basic constraint equation which:
scribes the one-dimensional motion components of single spatial frequencies (Section .
We then describe three classes of estimation techniques for solving a system of these ¢
tions: ordinary least squares (Section 2.2) and total least squares (Section 2.3), and we
sketch some robust techniques (Section 2.4). A discussion of models that do not ass
constant flow (Section 2.5) and a summary (Section 2.6) conclude the section.

2.1. The Constraint Equation

If 1 is the attribute value that is constant at corresponding points, then

DI al al al
ﬁ=5u+8—yv+§=o, Q)
wheret represents time and andy represent two different Cartesian coordinates. The
lettersu and v represent thex andy components of the flow, respectively. Of course,
our observations of these derivatives are inevitably going to be highly noisy but that fac
incorporated in our noise model. The mathematical issue of whether these derivatives ¢
is not a real issue. Both in the real world and the image domain, we smooth or averag
small amount before we do anything else.

We first consider the simplest statistical model. Equation (1) cannot be expected tc
strictly valid. More reasonable would be

DI al al al
ﬁ:&qu@UJFE:E‘ (2)
Heree is a noise variable that might be assumed to be zero-mean Gaussian.

There is another interpretation of this equation; one might assume that (1) is exactly t
but one cannot observe the temporal derivaﬁ%'ewith perfect accuracy. Instead one can
only observe% + € wheree is some noise variable that might be zero-mean Gaussia
Later we assume there are also errors in the observation of the spatial derivatives, and
terms cause the main difficulties, but we ignore these terms for a while in order to simpl
the analysis.

Equation (1) (or (2)) is really many equations. There is one equation for each point
the image, or one equation for each point where the data are reasonably accurate, a
indicate the dependence ©bn the pointp of observation we will write:, in (2).

We assume the flow is constant over the region of interest. If the diffegemhave the
same statistical distribution and are independent, zero-mean Gaussian variables, the
maximum likelihood solution is obtained by using least squares: Fing, ththat minimize
the expressiol}_ , e5.

Even if theep’'s are not Gaussian, but the differes’s have equal variance and all
the different noise variables are uncorrelated, then the least squares solution is the
linear unbiased estimate (BLUE) [24, 43]. We explain now what being BLUE means. L
unprimed letters represent estimates and use primes to indicate that actual quantitie
being referred to. Being unbiased means that the expected value-of is zero. (The
ordinary least squares estimate is not unbiased if there are errors in the measurement ¢
spatial as well as the temporal derivatives.) To say that the BLUE estimate is linear is to
that it is linear in the observed values of the temporal derivat%\'/e§or an estimate to be
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the best means it is the best with respect to some measure or metric. Goodness is mea
by the expected value ¢/’ — u||?. Here|| || means the length of a vector.

Itis significant that the BLUE estimate need not be the best linear estimate, only the |
linear unbiased estimate [23]. The classical James—Stein [23] best linear biased esti
actually is relevant only for estimation of arcomponent quantity with > 2. In that case,
it makes sense to use a biased estimate (an estimate that is known to be an underesti
in order to reduce the variance of the estimate and thereby reduce the expected size
error.

Flow has only two components, but if the error in (1) is nonzero mean [17], while ti
differentep’s are uncorrelated and identically distributed, then there is a three-compon
unknown; there are two components of flow and the third component is the mean valu
€p, and we do have to estimate the mean valuepdh order to compute flow. If there is
a change in the global ambient illuminatiasp, will not be zero-mean. Later we will relax
the assumption that flow is constant, and then we will have more than two component
estimate, so James—Stein biased estimation is relevant.

2.1.1. A parenthetical remark about how to handle correlated err&wven ignoring the
possibility that the bestlinear estimate is biased rather than BLUE, we see thatthere are «
problems. If the various noiseg are not uncorrelated or the different noise variables hav
differentvariances, itis first necessary to apply a whitening transformation before compu
the ordinary least squares solution. If we wish to solve a system of equatica® with
correlated error, then we must first multiply by some ma@such thatzj QijL; =0
is a system of equations with uncorrelated errors of equal variance. Considering the st
expressions.; as a vector, we need to sol@L = 0 using ordinary least squares. In order
to actually apply the whitening transformation to (1), we need to know something abt
the statistics of the,. In practice, it might be difficult to accurately estimage We will
ignore this problem.

2.1.2. Preprocessing by linear smoothingh problem arises because we cannot ever
apply (1) unless we can make reasonable estimates of certain derivativ&&imde, in any
case, it is difficult to estimate pointwise spatial and temporal derivatives, it makes sens
apply some kind of linear operation before solving for the flow. In fact@die a linear
operator and pretend thaf which is a function of one temporal variable and two image
spatial variables, is defined on all B, so that

GI(x, y,t):///Gx,y,t(a, b,c)l(a,b,c)dadbdc 3)

Furthermore let us assume thatis a convolution, so that the coefficie@ y(a, b, c)
depends only onx(— a,y — b,t —¢). Then if flow is constant, from the fact that the
derivation and convolution operators commute, we can conclude that

0G| 0G| 0G|
u-+ v+ =

0. 4
ax ay at @)

Like (1), (4) is only approximately correct. Equation (4) normally makes little sense unle
u, v are constant, but if the convolution is very local so t@aty(a, b, ¢) is very small
unlessk, vy, t) and @, b, c) are very close, then it makes sense to apply (4) at a paingt t)
even if flow is not constant everywhere but only approximately constant in the vicinity

(X, y.1).
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If (1) has Gaussian error, so does (4). If the errors in (1) are uncorrelated, that need
be true of (4).

For an interesting special case of (4),&be a Gaussian smoother. In faBtmight be an
ordered set of smoothers. Equation (4) makes ser3g fi(a, b, c) is a real vector rather
than a real scalar. A two-component real vector can be reinterpreted as a complex sc
This will allow the Gabor transform to fit into the schema of (4) and be relevant when v
discuss frequency-based methods.

2.1.3. Application of linear transformations to | We might apply the Fourier or some
other linear transform t%—{ considered as a function of position in space-time. A Fourie
transformation is a convolution by a set of exponential functions. It is especially sensi
to apply the Fourier convolution rather than some other convolution because by Parse
theorem, the quadratic norm is preserved under Fourier transformation. This means tt
f is a complex function and * its complex conjugate angif 5= [[[f(x,y,t) f*(x, y,
t)dx dy dt and F represents the operation of computing the Fourier transform, the
|F fll2 = |l fll2. Thus it does not matter whether we compute the least squares solut
in the frequency or the space domain.

In more detail, letting subscripts represent partial differentiation, we start with tt
equationlyu + lyv + |y = €. Taking the three-dimensional Fourier transform (the three di
mensions being time and the two spatial dimensions of the image) and tefting, w; rep-
resent the spatial and temporal frequencies, we obtain the equaior-(wyv + wi) Fl —
V(—=1)Fe =0. To minimize theL.? norm ofe is the same as minimizing the? norm of Fe
and this would be the same as minimizing tifenorm of yu + wyv + w)F 1. This means
we need to find the flow, v that defines a plane with poings, wy, w (that is for every
wy, wy, o there isw for whichwxu + wyv + w = 0) such that thé.2 norm of the product
(wr — w) timesF1 is minimized. In other words we need to minimize a weighted sum of er
ergies; for each triplet of frequencias,( wy, w) thatis off the planexu + wyv + w =0
corresponding to the flow, v we multiply the energy in that frequency by a weight that is
the distance squareay(— w)>.

Another possibility is that there is noise in the estimation of the derivatives, both spal
and temporal. Then we would have the equatigmi(+ 57v + §t) — Nxu — Nyv — Ny = 0
where theN’s represent noise. Given data about the obsefvéd the equation abovd,
represents the observé)l we want to estimate the flow, v and the noiséN,, Ny, N; in
such a way as to minimizgNy I3 + I[Ny |2 -+ [[N¢]|3, where again the subscripts indicate
the L2 norm (this corresponds to total least squares estimation).

Taking the Fourier transform, we obtaingu + wyv + @) Fl — /=1(FNxu + FNyv +
FN;)=0. Here the noises in the Fourier domain are functions of frequency. We «
vide the noise by,/—1F1 to obtain appropriate noise variables for which we can
write ((wx + MU + (wy + my)v + (o + m))F1 = 0. We have to choosa, v, N to
minimize | FNx |13 + [[FNylI3 + [ FN;[13, or equivalently minimize[((jmy|* + [my|? +
Im¢|?)|F11?), the integral being taken over all triplets, wy, . That is the triplets
(wx + My, wy + My, w; + M) lie on the plane that defines the flow and we measure th
sum of the distances between these triplets and the triplgts.(, «) (the normal dis-
tances to the plane) times the energy at each frequency.

Alternatively, we might want to compute only local Fourier transforms. And inevitably
we lose some information because we do not have an infinite image or a continuous
of observations, but that just adds additional noise in certain frequencies and forces L
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deal with local transforms. Let us multiplyby a Gaussiai® centered at poinP or by a
functionG that it is equal to O at points far frofd and equal to 1 ned? and then take the
Fourier transform. The effect on (1) is to give less weight to data at points farPrarhen
computing the least squares solution. The noise is also multiplied. by the frequency
domain, instead of multiplying the noise 18, we convolve the Fourier transform of the
noise by the Fourier transform @. But the Fourier transform of a Gaussian is also &
Gaussian. In other words, we minimize an expression very much like that in the previ
paragraph, but here we first multipfyl by a distance, then smooth the result by convolving
with a Gaussian, and finally compute b norm which must be minimized.

In Appendix A we analyze relevant weighting functions for phase-based methods [1
Such methods are based on the assumption of conservation of local phase which is estir
using the Gabor transform or some local Fourier transform.

In practice, Fourier or even Gabor transforms might be too hard to compute, so one ¢
putes some finite approximation, but still uses the idea of minimizing something involvi
the product of a distance function and an energy function.

In any case there is an equation of the form

AU+ Bv=C (5)

for each index where the indices usually represent points in space-time or frequencies
some kind of transformation space. Often (5) is solved by a kind of ordinary least squa
Alternatively it may be solved with total least squares, a method that allows for errors
the observations of the spatial derivatives pbr some more robust method. It may first be
necessary to apply a whitening transform in order to handle correlation between the er
of different equations, but for the most part we will ignore that possibility.

2.2. Errors in the Ordinary Least Squares Solution

Let us first analyze the simplest method of solving (5): ordinary least squares. In
following, unprimed letters are used to denote estimates, primed letters to denote ac
values, and’s to denote errors, whedA = A— A, §B=B — B, andsC =C - C".

Let n be the number of indicasto which (5) applies. In order to explicitly represent the
errors the equation is rewritten as

(A —§A)U+ (B — 8§Bj)v =C; — §C;. (6)
It is also convenient to explicitly represent the equation in matrix form
(E—8E)u=C-3sC. @)
HereE and$ E aren by 2 matrices which incorporate the data in #tyeandB;. The vector
u denotes the flow whose components @aandv.
By definition the least squares solution is given by

u=(E'E)"*E'C. (8)

If there are no errors in the estimation of the coefficieNtaind B;, then under the usual
assumptions that the differed€; are uncorrelated and have the same variance, least squa
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gives an unbiased estimate and it is also simple to give confidence limits for the solutio

_IC—Euw|3 ©)
n—2

is an unbiased estimator of the variance of 8@ [15, 24] where| |, represents the
guadratic norm defined on vectors (i.e., the square root of the sum of the squares of
values of the components of the vector) anm@presents the ordinary least squares solutio!
to (5).

If we use a weighted least squares solution instead of the ordinary least squares solt
and the weights are positive, then ifi{(*/2)? is the weight of equation the weighted least
squares solution is the same as the ordinary least square solution that would be obtair
we putwil/2 Eij andwil/ZCi in place ofE;; andC;, in (5). So even in this case it is possible
to estimate the variance of the error in the flow estimate.

But, in fact, these error estimates should be modified to take into account the bias. Tt
will be errorss A, § B; and these errors will cause the least squares estimate of the flow
be biased.

It is well known in the statistics community that the usual effect of the edd{ssB;
(i.e., errors in the matri) is to produce an underestimate of the magnitude [df5, 18,
37], and the bias also affects the estimate of the direction.

In the following, for two somewhat different models, this bias is demonstrated. In bo
cases it is assumed that the erdEs andsC; are independent, that there is no correlation
between the spatial E;) and the temporabC;) noise and no correlation between the noise
and the data. The difference lies in the assumptions about the conditional probability of
noise and the additional assumption of Gaussianness in one of the models.

In the first case (Section 2.2.1) it is assumed that the noise is symmetric around
actual values. That is, giveR’ and C’, the distribution of the noiséE = E — E’ and
8C = C — C’is assumed to be symmetric, but not necessarily Gaussian. In this case tt
is a downward bias, but only if there is a sizeable number of measurements.

In the second case (Appendix B), what is assumed is symmetry of the noise around
estimated values; given the known d&tandC, there is a Gaussian probability distribu-
tion for the errorsSE andé$C. In this case there is a downward bias for any number o
measurements.

2.2.1. Bias for noise symmetric around the actual valuésrst we explain why, in the
case of very few measurements, the bias is an overestimate of the magnitude of

This can be seen by considering the simplest linear system, one equation with one
known. Eu = C whereE # 0. The ordinary least squares solution for this equation is th
same as the equation obtained by simply dividihgy E.

Let

where primes represent actual values. The estimated solution is

C _C+sC

E FE +3E’
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The expected valug(u) of the value of the estimated solutians the expected value of

C/
E'+E°

SE (andéC) are assumed to be symmetric in the sense that, for any real numther
probability thats E = s is the same as the probability thdf = —s.

Now temporarily make the special assumption fd&t| = s < |E’|. Then the expected
value ofu is just the expected value of

c’ 1 1 C'E
= = 10
2<E’+S+E’—S> (E)2 —¢&? (10)

which is greater than the absolute value of the actual sol@i&i/E 2 if s # 0.

If there is a large number of equations, there is a simple argument (see e.g., [38])
the ordinary least squares solution is downward biased. This argument is essentiall
asymptotic argument. The least squares solution is the ratio

u=(E'E)"tE'C. (11)
We have
u=(((E)' + (SE)')(E' +8E))"Y(E' + SE){(C’ +5C). (12)

If there is correlation between the temporal nod$& and the spatial noisé€E, this
correlation can affect the expected valuauoff, however, the expected valuesaf and
SE are zero, andC andsE are independent and also independenEoéndC’, then the
expected value of the least square solution is just the expected value of

((EN' + BE))(E' + SE))E"C". (13)
But this expression can be rewritten as
((EN'E' 4 (8E)'SE + (E)'SE + (SE)'E")E"C. (14)

The argument is that if there are enough equations then this last expression can be cl
approximated by

((E)'E' + (SE)'SE)LE"C. (15)

This is because terms of the fordH)' E’ are likely to be small if there are many equations
in the system we are solving using least squares. The elements of this product matrix
of the form}; 8 Ejj Eix. If there are enough equations, these sums should be small if t
expected value ofEj; = 0.

We next remind the reader of a partial order defined on real matrices that generalize:
usual ordering of the real numbers. We use this partial order to define relative size.

Write M > 0 if M is a positive definite matrix. Writt > N if M — N > 0 whereM
andN are two matrices, and similarly fo > N.



12 FERMULLER, SHULMAN, AND ALOIMONOS

The order defined in this way generalizes the usual ordering of the real numbers and
some of the same properties. Thubflif > M, andN > 0, M;N > M,N andM;* < M.
For any non-null vecto¥ such that the indicated multiplications make setfj$¢;V |2 >
M2V |2, where again| |2 is the usual quadratic norm. References to the matiitesl
sayingM is of greater size thaN can be reinterpreted as meaning tha#lffM, N'N are
both nonsingular theM'M > N!N.

We can derive the result that the matrig({' E’ + (§E)'$ E)~* is smaller than the matrix
((EN'E")~L. Multiplying by (E)!C’, we get the result that()' E’ + (SE)'6E)~1(E')!C’is
smaller than the actual solution. Thus the expected vallja|pfis smaller than the actual
u']l2.

This argument for the case of ordinary least squares can also be applied to weighted !
squares provided there is a sufficient degree of cancellation of the noise.

We can also say something about the direction of the bias. We assume we are usi
gradient-based method only in order to simplify the description. Also, temporarily assul
that there are only two (nonparallel) gradient directions in an image. Then even if the t
directions are not orthogonal, itis easy to analyze the two-dimensional least squares prol
as two one-dimensional problems. Assume thatnds E are written in a not necessarily
orthogonal coordinate system in which the directions of the two axes are the two obser
gradient directions. Then the direction in which there are more data (i.e., the directior
which E!E is largest) is also the direction in which there is the largest signal to noise ra
(i.e., the largest ratio oE'E to §E'SE) But the effect of noise > 0 on 1/(x? +¢) is
smaller the greatex is. So there is less bias in the direction where there are more data e
more bias (i.e., underestimation) in the direction where there are less data, and thus the
a bias in the direction of the estimated flow.

There are not actually only two gradient directions, but all that really matters i& the
matrix. Using a nonorthogonal coordinate system (i.e., rotating the two axes of the origi
coordinate system by different amounts), we can miakeiagonal, which is equivalent
to assuming there were only two actual gradient directions. Similarly, we can assume
E is diagonal if we use a nonorthogonal coordinate system. If there are enough equa
indices in (5), the two actual and the two observed gradient directions will be almost |
same.

The interesting conclusion that can be drawn at this point is that since many comn
methods of computing optical flow essentially use ordinary least squares, there are v
methods that will produce consistently biased results, and no Gaussianness assumg
are needed to derive that conclusion. More interesting, the bias is often an underestima
and is smaller in the direction of more spatial gradients and greater in the direction of fe\
gradients. It might be a good idea to try to estimate the amount of bias and then correct
it or perhaps employ a method more accurate than least squares in the first place. Bu
not that easy to correct for the bias. One common technique used to correct for the bi
total least squares, but as we shall now see, this method has its own problems.

2.3. Total Least Squares

The problematic bias arose because of error irEmatrix and thus in th&' E matrix.
Let us rewrite (5) in the form

AU+ Biv—C =5Au+5Bv—456C. (16)
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Even ifu andv are known, there is no way of telling from th¥¢ B, C data how the noise
is apportioned amongA, §B, 5C.

This is the main difficulty with total least squares: We have to know the relative amot
of noise in the spatial and temporal errors. If the two spatial and the temporal varian
of the noise are the same, then total least squares is approximately unbiased. Simuls
have shown that if the spatial noise is larger than the temporal there is an underestima
Otherwise, there is an overestimation. As discussed below, information about the n
ratios is difficult to compute; it can be obtained only from the change in flow betwes
different regions.

Assuming again that th&C;, § A;, andé B; are independent of each other and also of the
dataA, B, C,

o2(8Ci + 8A U+ 8Biv) = 02(8C;) + U20%(8A) + v20%(8B)). (17)
Hereo?(x) is a function representing the variance of quantity

Given the total squared noi$é? = u(8 A\)? + v2(8Bi)? + (5C;)?, the most likely allo-
cation of noise apportions the total noise so that

N2 _ o2(8A) )
CAY = o2 A) + 120208 1+ 02(C) (18)
' . 0’2(3 Bi)
(0B = oo A) T vo?(0B) + o260 (19)
and
(6C)? = (G 2 0

U2o2(8A) + v202(8B;) + 02(8Cp) N

We chooseN? so as to minimize>, N? under the assumptions th&f = u3(§A\)? +
v2(8B;)? + (8C;)? and that (18) through (20) are valid. This is called the total least squar
solution.

The total least squares solution can also be obtained by chod&jngB;, sC; so as to
minimize

(21)

5C2 (BA)P | (0B
Zi: 02(8Ci)  o%(8A)  o2(8B)’

For an extensive discussion of the total least squares solution and of other metf
involving errors in the variables, see [42]. An application of total least squares to optif
flow computation using gradient techniques is found in [45].

Under the assumption the varianee¥s A), 02(8B;), 02(5C;) are known, interesting
simulation results and thoretical analysis of total least squares can be found in [16,
What has been discovered is that the total least squares solution is approximately unbic
but there is a trade-off: less bias but more variance.

To solve the total least squares problem we need to solve the problem of minimizing
expression

a?(8C;)
o2(8Ci) + o2(8 A)U2 4 02(8 B; )v2

> (Au+Bv—G) (22)
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Even though this solution is approximately unbiased, the solution cannot be compu
unless we know the variancesdA;, § Bj, §C; or at least know the ratio of the variances of
the spatial and temporal noises. It is difficult to obtain this ratio. Even if we knew the actt
constant flow we could not use tide B, C data to determine how much of the blame for the
factthatAju + Bjv — C;j # 0is due to spatial noise and how much is due to temporal nois
without additional assumptions. It is therefore going to be necessary to assume somet
rather questionable in order to obtain the necessary ratio of the spatial and temporal no
In other words, we have to augment the model we have used so far.

If the flow is not constant then the amount of noise is a function of the flow. The varian
of the total noiseAu + Bjv — C; is U?c?(8 A)) 4+ v202(8B;) + 0?(8C;). If u varied as a
function of position, then if we knew the flow everywhere and if the statistics of the err
in the A;, B;, C; were independent of position, we could solve for the necessary varianc
If we could obtain a reasonable, crude estimate not just of the flow but of the difference
flow between different patches of the image, and this crude estimate were fairly relial
we could obtain rough estimates of the necessary ratios and then use these rough esti
to compute a total least squares solution.

However, there are many obstacles before us if we wish to assume we can use
methods of the previous paragraph to compute an approximately unbiased solution tc
flow estimation problem. In regions where different objects are observed, or even in regi
where different parts of the same object are observed and the texture properties differ gre
in different subregions, it is implausible to assume homogeneity of error statistics. In or
to solve for the needed variances, we need to obtain a good estimate of the varianc
Aiu+ Bjv — C;. We could use the estimatg(h — 2) >, (Aju + Bjv — Cj)z, wheren is
the number of indice$ for which the flow is approximately equal to that at indeBut
unlesa: is large, this variance estimate can be noisy. If we assume the noise is Gaussian
the flow is exactly constant, we can tr@tj (((A”“*E#C”)z) as having g2 distribution
with n — 2 degrees of freedom wheré is the actual variance of the noisgu + Bjv — C;.

But we do not knows 2 or u or v. The actual variance may differ from the variance estimate
from the limited set of data available. Using what we know abgudlistributions, we see
that the standard deviation of (h — 2)2j (Aju+ Bjv — C))?is large unless the number
of equationsh is large.

There are still other sources of difficulty. We need substantial differences in flow betwe
different regions of the image in order to be able to solve for the unknown variances
8 A, §B;, 8C;. Otherwise, we cannot disentangle these different variances. But if there i
substantial difference in flow, there may also be a substantial difference in the noise stati
of the different regions, so it may be difficult to compute the variance ratios we need.

Other methods can be used to determine the variances we need in order to compi
total least squares solution. But they also depend on questionable assumptions and |
estimates. For example, one might assume that the variang8s&B, 5C are proportional
to the variances oA, B, C or proportional to some other easily obtained statistics of th
data.

2.3.1. Confidence limits.If we can somehow obtain reasonable estimates of the vat
ances, it is not too difficult to obtain a rough estimate of the variance of the error of the tc
least squares optical flow estimate. We have to apply a certain optimization conditior
order to compute the total least squares solution. This involves solving a certain nonlin
equation. The nonlinear equation can be approximated by a linear equation. We know |
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to estimate the variance of the error of a linear equation that has a unique soluienKb

for a known matrixk, then if we know the statistics @f, we know the statistics &. If we
know the variance—covariance matrixlmfwe know the variance—covariance matrixeof
What we need is a linear approximation to the nonlinear constraint that defines the total |
squares solution; then we can write= KC for some matrixK, and this approximation
must remain approximately correct (using the same matjeven if a small amount of
noise is added to the dag C. Or for simplicity, we can just use the ordinary least square
solution for the purpose of estimating the variance of the error in the flow estimate. T
total least squares solution and the ordinary least squares solution will be different. But
variance estimate is rather crude anyway, and if the total least squares and ordinary
squares solutions are very different, most probably neither one is trustworthy.

2.4. Robust Techniques

Many of the essentially linear methods for obtaining flow estimates suffer from simil
problems. In the form we have presented them so far, they are not very robust. A few outl
can greatly affect the computed result. Several robust methods have been develops
alleviate the problem [32]. It is difficult to analyze complex nonlinear methods. But a lar
number of these methods are subject to the same biases and inaccuracies as linear me

We next analyze what happens when we try to robustify the classical way of obtaining
value of (constant) flow using ordinary least squares. The ordinary least squares solt
can be rewritten in a way that is very illuminating. This analysis also applies to total le:
squares. We just have to appropriately approximate the given total least squares prol
by an ordinary least squares problem as discussed in Section 2.3.

As mentioned above, the least squares solution is theipaithat minimizesy ; (Aiu +
Biv — C;)?; hence we require

> A(AU+Bv-C)=0 (23)

and
> Bi(Au+Bv-C)=0. (24)

Thus
> (Au+ ABv—AC) =0 (25)

and
> (ABu+ B2 —BC)=0. (26)

So assuming a unique solution exists, by Cramer’s ruie,% is aratio of two determinants.

N=> AG> B’-> AB Y BC (27)

=> > ACB!- ABBC (28)
o
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while

D=> > A’B’— ABA;B,. (29)
P

Both N and D can be rewritten in ways that are more illuminating:

N = ZZ(Ai B;)(CiB; — C;B) (30)
=Y > (ABj— A{B)(CiB; - C;B) (31)
=i
Zci B; — C;Bi
and
D=3 S (AB; - AB)AB; - BA) (33)

i =i

=> ) (AB; - AB). (34)

i i
But the solution to the pair of equations

Aiu+ Bjv — Cj =0; AjU—i-ij—Cj:O (35)

:CiBj—CjBi; v:CiA,——C,-Ai. (36)

A B — AB; AB; — AjB
Hence the least square soluti%ncan be reinterpreted as a weighted average. For any psq
of equations indexed by# j, letting D;jj = A/ B; — A;B; andN;; = G Aj — C; A, we
can solve the pair of equations farand obtain the solution;j = N;; /D;; provided the
denominator is nonzero. $ois a weighted average of thg 's with weightsDiZj .

We have only given the equation foy; but a very similar equation far; can be given.
The result established here also applies to weighted least squares (even if there are ne
weights): just replace the equati@u = C; by w; E; = w;C; wherew is the square root
of the weight of théth equation; if the weight is negative; will be imaginary.

Robust methods somehow combine the lagas. One can think of many robust methods.
For example, one can compute the minimum-volume ellipse containing most of the wei
of the (ujj, vij). Or, instead of considering alk£ j to solve foru, one can use some sample,
for example, by picking the pairs with Iar@ﬁ 's.

It is difficult to provide a general analysis of the conditions for bias in robust methoc
We know that the least squares solutigrwhich is a weighted average of the locgl’s is
biased. Many robust methods can also be understood as averages; géthsing different
weights. The point is that to choose the right weights, which would let us avoid the bi
the statistics of the noise have to be known. Thus by the same argument that the n
parameters often cannot be estimated well, robust methods like the ones discussed &
are biased.
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2.5. Nonconstant Flow

Reference has already been made to the possibility that the flow is not constant. It
assumed that the flow is locally constant, but even that is not plausible. It is more likely t
the flow is a simple function of position, perhaps approximately linear or approximate
quadratic. If depth is constant, flow is an approximately quadratic function of position. Mc
generally, the flon can be decomposed into a linear combination of basis flawghere
eachw; is a known function of position anal = ) ; uyw; for some unknown coefficients
u;. We can still use the fact th@ = 0 to obtain a linear equation; Ejiu; — Cj = 0for
the unknowru;. We still have the possibility of applying a local smoothing operator befor
employing the principles that corresponding points have the same attribute value. We
still take Fourier transforms. We still have the same problems with bias in the ordinary le
squares solution, and we can still obtain a rough estimate of variance using this solutic

A problem with this discussion is that if the flow is not constant, the result of applying
smoothing operator té u is not the same astimes the result of applying the smoothing
operator toA;. But if the basis vectors/; are known, we can compute in advance, for any
vectorz; of coefficients, the effect of applying the smoothing operatavio z; .

In our framework, we cannot easily handle sharp discontinuities in the flow field if tt
locations of these discontinuities are not known. But we can model more than simple lin
decomposition of the flow.

One possibility is to define plausible a priori models of how equation error varies wi
the index of an equation. If the indicesepresent points where flow is observed, and we
wish to obtain the value of the flow in the vicinity of some pomtit is plausible that the
further a pointp; is from p, the less likely it is thatp and p; have the same flow. Thus
instead of computing a least squares solutioAto + Bjv — C; = 0, we should compute
the solution tok; (Aju + Bjv — C;) = 0 wherek; is a weight dependent on the distance
betweenp and the pointp; that is indexed by. This procedure will, in effect, give us a
variety of smoothed flow values. Different weighting functions can be used for smoothi
over different size regions. We will still get consistent underestimates using the ordin
least squares solutions under certain conditions. In order to get reasonably reliable |
estimates, we will want the data from many different equations to substantially influer
the computed solution, but that will produce a tendency BYE’ to be small compared to
EYVE’ and thus give us underestimates.

Other linear methods can be treated within our framework. It might be better to mc
explicity model the random point-to-point variations in flow. Then the equafign+
Biv — C; = Ofails to be exactly true not only because of noise in the Aat8&;, C; but also
because of “noise” in the, v. That means that the flowconsists of a constant regional flow
ur to which is added noise, which is zero-mean. This noise is assumed to be independe
of the noise in theA;, Bj, C; and it is also assumed that thg’s of distinct points are
independent and identically distributed. The amount of varianégurt Bjv — C; due to
random point-to-point variations in flow i&202 + B/202(v). Herea2(u), o2(v) represent
the variances of the point-to-point flow variations.

Assume for the sake of simplicity that there is no noise in Aher the B data. Then
under the assumption that the noise is Gaussian, since the weights should be inverse
variances, the maximum likelihood solution fois the ordinary least squares solution of

02(Ci)
02(Ci) + AfoZ(u) + BZoZ(v)

(Au+ B —C)=0. (37)
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Inorderto solve this, itis necessary to know the variance of the noeind the magnitude
of the variance of the noise in the flow componants. Rough estimates of these quantities
can be made if there is a rough estimate of the value of the flow and hence a rough estir
of how the size ofAju + Bjv — C; varies as a function of; and B;. A problem is the
noisiness of this method of inferring the size of the variances infrom the data. Even if
we have good estimates of the variances, we still have the same problem of bias as b
when we negleci A;§B; # 0.

2.6. General Remarks on Gradient and Frequency-space Methods

We have seen how difficult it is to estimate the noise parameters using the limited inf
mation available to us. This is true for several possible models of the noise. The resu
inevitable bias.

If we had a larg amount of data for which the noise parameters were fixed, it would
easy to closely approximate the noise parameters. But the noise parameters do not
fixed long enough. Sensor characteristics may stay fixed, but there are many other sot
of noise besides sensor noise. Different lighting conditions, different physical properties
the objects being viewed, and different orientations of the viewer in 3D space all resul
different amounts of noise. Aside from all these factors, in order to estimate derivatives
to compute Fourier transforms, we need to interpolate. The accuracy of interpolation
depend in complex ways on the pattern of intensities in the image.

3. CORRELATION METHODS

We next discuss a model for correlation methods which also gives bias. Classical corr
tion methods find the that maximizes the correlation betweldmp, t) andl (p + u, t + 1)
where this correlation is computed over a large fragment of the image. The pa@ran
arbitrary point in 2D image space ahcepresents time. If there is constant flow equal to
and corresponding points have the same intensity, then this correlation should be perfe

To simplify matters, we assume that the measure of correlation is additive, so that
correlation is justzp,t g(l(p,t), I (p+ u,t+ 1)) for some functiorg. For example, the
correlation might be measured by the covariance if we could safely ignore the fact t
the errors in the estimates of the valuelo&t nearby points are not independent. This
assumption is comparable to the assumption in gradient-based methods that the errc
(5) at differenti’s are independent. For simplicity we will assume that g is a quadrati
function.

Nothing changes very much if instead of assuming that corresponding points have
same , we allow for slowly changind and requiring that attimet + 1 be alinear function
of | at timet. Then we also have to pick appropriate coefficients for the linear functic
and compare the actuhlat a pointQ corresponding to poir® with the predicated. The
prediction is based on a linear predictor with unknown coefficients. We can solve for t
unknown coefficients using least squares.

There are rather annoying artifacts due to gridding. If in computing the correlation v
only sum over f, t) on the grid, the correlation would be affected by how near the point
(p+ u, t + 1) are to points on the grid. This is because in order to compute the vallies c
at points off the grid we need to interpolate. The interpolation entails a kind of smoothi
that cleans up some of the noise and hence increases the correlation; we need to do
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smoothing to evaluateat points half-way between two grid points, but much less smoothir
to evaluatel near the grid points. In general, interpolation involves different amounts
noise-smoothing at different points, but we ignore this issue. We assume either that we
only working with points on a grid or that we have designed an interpolation scheme ar
correlation measure that do not suffer from anomalies due to gridding, we deliberately
random noise to the interpolated intensity values to counteract the problem, or we com|
correlations using only points on the grid (and if we want to obtain subpixel accura
estimates of flow, we interpolate the correlations).

We analyze the bias only in the case of constant flow. The same kind of analysis cc
be applied more generally, and roughly the same result would be obtained, but the note
would have to be more complex. We will also not explicitly handle the case where wi
must match at corresponding points is hpbut some linear function df.

The essence of our claim is that if the noise values at different points are correlatec
that the closer two points are in space-time the greater the correlation, then there will |
bias toward underestimation. The same bias will arise if we assume that the obkésved
obtained by smoothing the actual valuesl dh some space-time neighborhood and ther
adding noise.

Let U’ be the actual flow, and let the time interval between the images be one unit.
simplify the analysis we consider only one space dimension.

We assume that the observiet equal to the actudl plusél, a noise term. Thél'’s at
different points are not uncorrelated. We define a Euclidean distance metric in space-
and assume that the smaller the distance between two points, the greater the correlati
theél’s found at the two points. Then if corresponding points have the same intensity,
difference between the intensity observedai-(u + §C, 1) and the intensity observed at
(X, 0) is the sum of two terms. One term is the difference between the dd¢{qab) and
I'(x 4+ 8%, 0) (note that (X + §x + u, 1) = I'(x 4+ &%, 0). The other term is the difference
betweenthél at(x + u + éx, 1)andtheé| at(x, 0). Assuming that the noise is independent
of the actual’,

S (X + U+ 6%, 1) — 1 (x, O)?
=> (I'(x, 00— I"(x +8C,0) + > (81 (X +u+8x,1) — 81 (x,0))> +¢. (38)

Here ¢ =23 (1'(x,0) — I'(X 4+ 8x, 0))(81 (x + u + 8x, 1) — 81 (x,0))) and has exp-
ected value zero. Thus it can be ignored when analyzing bias, because the noise i
dependent of the actubl, andg is the summation of many terms which will tend to cance!
each other out so thatwill tend to be small compared to the other two terms. If we comput
the correlation over a large enough region so that boundary effects can be ignored, an
pick a values, the first term on the right-hand side of the above equation will be the same
we change the value ¢k from s > 0 to —s, but the second term will be smaller because
of the correlation pattern of the noise. This will result in bias. A preferenca fers over

u + swill arise.

If there are many sharp gradientslinin the x-direction, the first term will be fairly large
unlesssx is small, so the bias will be less significant.

The above was only a 1D motion analysis. But the only additional complexity in the Z
case is the notation; there will still be the same kind of bias. A slight generalization of t
argument shows that in the 2D case, if there is bias, it is smaller in the direction in wh
there is more data; the result is a bias in the orientation of the flow.
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3.1. The Effect of Smoothing

What if our model of noise does not apply and the local estimates are noisy but unbias
Even so, local correlation estimates of flow are likely to have a lot of error, and they neec
be smoothed to give sensible results. In fact, the most frequently used correlation mett
(such as those discussed in [3, 35]) compute this correlation over small areas of support
then apply smoothing to obtain the optical flow. These methods, because of the smootf
will be biased.

The simplest kind of smoothing assumes constant flow and uses least squares to sn
the local estimates; indeed, it computes a weighted average. More sophisticated smoo
perform a kind of regularization and suffer from the biases discussed in Section 2.5; tl
still do not avoid bias.

4. AN EXPLANATION OF OPTICAL ILLUSIONS

4.1. The Model

We use a gradient-based method; simple least squares estimation; and additive, id
cally, independently distributed, symmetric noise. This is the model studied in Section 2.
an asymptotic proof of the bias was given there.

To have a notation for the estimated flow which allows us to give a detailed explanat
and which also shows the bias for a smaller number of measurements, we develop the
squares solution in a Taylor expansion.

In (5), let the variablesA, B, C be the spatial and temporal derivatives of the image
intensity function. Then this equation is the optical constraint equation. The estima
values @, B;, C;) consist of the actual valueg\(, B/, C/) and the additive noisé &;, § B;,
3C). The expected values of the first-order terms are zero and the expected values o
second-order terms are given by the covariance matrix

03
E(EC)(EC) = | o2
O't2
The expected values of higher order terms are assumed to be negligible.

In Appendix C the expected value of the estimated flow (18) is developed in a seco

order Taylor expansion at zero noise; it converges in probability to

plim E(u) = U’ — na2M'~ 1/, (39)

n—oo
where M’ = E'E/’, the matrix of exact spatial gradient values, anig the number of
measurements. Formula (39) is well known [33] and could also be derived from (15).

This formulation allows for easy interpretation of the effects of the gradient distributic

on the bias of the computed flow, as all the information is encoded in the nMtriin
the case of a uniform distribution of the image gradients in the region where the flow
computed M’ (and thereforav’~1) are multiples of the identity matrix, leading to a bias
solely in the length of the computed optical flow; there is an underestimation. In a regi
where there is a unique gradient vectdr,will be of rank 1; this is the aperture problem. In
the general case the bias can be understood by analyzing the eigenvedéréeiM’ is a
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real symmetric matrix, its two eigenvectors are orthogonal to each dtiethas the same
eigenvectors akl’ and inverse eigenvalues. The direction of the eigenvector correspond
to the larger eigenvalue &fi’~! is dominated by the normal to the major orientation of the
image gradients, and the productMf~* with vectoru’ is most strongly influenced by this
orientation. Thus there is more underestimation in the direction of fewer measurements
less underestimation in the direction of more measurements. The estimated flow there
is biased downward in size and biased toward the major direction of the gradients (tha
toward the eigenvector corresponding to the larger eigenvaliw of

4.2. Dissection

Figure 2 displays the expected values of the noise terms for the gradient distribution
occurs in one of the regions of the Ouchi illusion shown in Fig. 1 with blocks four time
longer than they are wide. The image gradients are in two orthogonal directions with f
times as many measurements in one direction as in the other. The plots show the chan
the bias as the angle between the gradients and the true flow direction varies. Thiangle
measured between the positir@xis and the direction of more gradients; the other gradier
direction is at an anglé + /2 with the positivex-axis (see Fig. 2a). Figures 2b and 2c
show the expected errors in length and angle. The plots are based on the exact second
Taylor expansion given in Appendix C.

For such a gradient distribution the bias can be understood rather easily. The eigenve
of M'~1 are in the directions of the two gradient measurements with the larger eigenva

v?

(b) ©

FIG. 2. (a) Sixteen measurements are in the direction making ahglith the positivex-axis and four
measurements are in the directién+ /2. The optical flow is along the positivg-axis and of length 1. (b)
Expected error in length. (c) Expected error in angle measured in radians between the expected flow and the
flow. The error hag = 0.15.
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corresponding to fewer gradients. A5= (0, 1), the noise term in (39) leads to a bias in
length as shown by the curve in Fig. 2b, which has its minimum at 0 and its maximum
/2 (that is, whent' is aligned with the major gradient direction). The error in angle i
greatest forr /4 (that is, whenu' is exactly between the two eigenvectorshdf-1) and it

is 0 for 0 andr /2 (Fig. 2c). Overall, this means the bias is largest when the major gradie
direction is normal to the flow and is nearly eliminated when it is aligned with the flow (th:
is, in the Ouchi pattern, when the long edge of the block is perpendicular to the motic
The bias for angleg betweenr /2 andr is obtained from the above plots by reflecting the
curves inr /2 and changing the sign of the error in the angle.

Let us now use these graphs to discuss the Ouchi illusion. In the Ouchi pattern, the rele
angles between the real motion and the predominant gradient direction differ in the ir
and the surround, so the regional velocity estimates are biased in different ways. Wi
instead of freely viewing the pattern of Fig. 1, the page is moved in different directions, \
observe that the illusory motion of the inset is mostly a sliding motion orthogonal to t
longer edges of the rectangle and in the direction whose angle with the motion of the pe
is less than 90 Using Fig. 2, it can be verified that for all angles the difference betwee
the error vector in the inset and the error vector in the surrounding area (or, equally,
estimated flow vectors) projected on the dominant gradient direction of the inset is in t
direction. For example, when the motion is along the first meridian (to the right and up), 1
error in the inset is found in the graph at angle- /4 and in the surround &t= 37 /4.
The two error vectors are of the same length, each toward the gradients of the longer ec
and the projection of the resulting difference vector is to the right. If the motion of the par
is to the right, the difference in error vectors is due to length, resulting in a perceived mot
to the right. If the motion of the paper is upward, the difference vector is downward; |
projection on the major gradient direction of the inset is zero and thus hardly any illusc
motion is perceived. Figure 3 shows, for a set of true motions, the biases in the perce
motion.

We assume that in addition to computing flow, the visual system also performs segm
tation, which is why a clear relative motion of the inset is seen. When experiencing |
Ouchi illusion under free viewing conditions, the triggering motion is due to eye mov
ments, which can be approximated through random, fronto-parallel translations. Since
difference in the bias vectors of the inset and surround has a significant projection on
dominant gradient direction of the inset for a large range of angles (that is, directions of
movements), the illusion is easily experienced.

The Ouchi pattern is an ideal setting for demonstrating the bias. First, the gradient dis
bution in the pattern is such that the bias is highly pronounced. Second, the 3D motion of
observer relative to the pattern (which is either due to random eye movement or the jiggl
motion of the paper) changes rapidly. This makes temporal integration of measurems
very difficult, and thus the system cannot acquire enough data to learn the noise parame

In[13] it has been proposed that the bias in flow estimation due to errors in the spatial
temporal image derivatives also accounts for the findings of some studies using variat
of the original Ouchi patterns and for a number of studies on the perception of movi
plaids, in particular studies which reported a misperception in the estimated velocity of
plaid.

The erroneous estimation of image velocity in plaids has been given another explana
based on Bayesian modeling [46]. This explanation is based on the assumption that t
is an a priori preference for small flow values. It is easily understood that this preferer
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FIG.3. The regional motion error vector field. The vectors shown are the differences between the true mo
and the calculated motion. To derive the sliding motion, compute the difference between the error in the inse
the error in the surround, and project the resulting vector on the dominant gradient direction in the inset. The
from the center is the direction of the true motion. The noise is Gaussian and the spatial gradient magnitude
In (@) and (b)gs = oy = 0.1;in (C),05s = oy = 0.2.

results in an increase in the a posteriori probability of small flow values and thus in a b
toward underestimation. Thus, in the Bayesian model the bias is in effect assumed, whe
in our model itis not It is true that most quantities in nature are more often small than larg
Spatial derivatives of intensity, temporal derivatives of intensity, curvature, and many ot
visual quantities tend to be small more often than they are large. This is the basic justifica
of the smoothness assumptions that we often use. But why should a system prefer to esti
small flow values? Even if large flow values are rare, it is especially important to quick
detect them when they occur. This leads us to doubt that a Bayesian model which ign
the utility of flow information properly reflects the biological visual system.

5. COMPUTATIONAL MODELS OF MOTION PROCESSING

The current view which dominates modeling in both computer vision and biological visit
is that the computation of optical flow is accomplished prior to any other computatio
involving image motion. First the optical flow is computed on the basis of 2D imac
information only; then it is used to compute 3D space and time interpretations, suck
3D motion estimation, segmentation, and shape estimation.

2 Non-Bayesian methods also implicitly assume priors. Least-squares methods assume that a priori all solu
have equal probability.
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We have seen, however, that estimation of optical flow entails computational probler
The estimation of optical flow requires that the data from each image region be aggrega
and this makes it inseparable from the detection of discontinuities (which are due to obje
at different depths or differently moving scene elements). Without knowing the locatio
of discontinuities, it is hard to estimate flow there, but in order to detect the discontinuitie
information about optical flow within their neighborhoods is needed. Noise in the estima
makes the problem even more difficult. As shown in the preceding analysis, for statisti
reasons it is very difficult to obtain accurate optical flow estimates even within areas
smoothly changing flow. Theoretically, to achieve good flow estimates, very accurate e
mates of the noise parameters are needed; but in order to estimate the noise well, m
information from large neighborhoods has to be integrated, and this requires detailed n
els of the flow field. The only way to obtain such models is from additional informatio
about the dynamic scene; this includes knowledge about the discontinuities, the shap
the visible surfaces, and the 3D motion.

This suggests that instead of following a two-step approach, which separates opt
flow estimation from scene interpretation, new models should be developed that comt
these processes. To obtain such models we might use a priori 3D constraints to imp
our estimates of the 2D flow. These might be constraints on surface shape or 3D mo
parameters. For example, we might seek the 2D flow that is consistent with the motion be
rigid in some region and that minimizes some measure of curvature or some function of
derivatives of depth [5]. Or we might obtain useful a posteriori information about the dept
or 3D motions of the objects in the scene using cues other than flow. Direct translatior
these 3D constraints into constraints on the flow (or its derivatives) might be easy. If r
we could work explicitly with the 3D information.

Any such computational model has to consider the information exchange between
different processes. For example, we can envision an architecture which carries out
computations in a feedback loop. First, we estimate the image velocity by combining n
mal flow measurements. These estimates do not necessarily have to be quantitative
could take the form of qualitative descriptions of local flow field patches or bounds «
flow values. The flow computed in this way is used to obtain partial depth estimates «
perform discontinuity detection; at the same time, an estimate of 3D motion can be deriv
The computed 3D information can then be fed back and utilized together with the ime
measurements to obtain better flow estimation, discontinuity localization, and improved
motion and structure estimation.

However, even when we use the best computations, we cannot guarantee that of
flow will be estimated accurately all the time, and this has to be taken into account
visual navigation. Most computational models assume generically computed flow wh
is used for obtaining accurate 3D motion and for metric shape estimation. Considera
of the computational difficulties of this approach calls for a more purposive approac
Depending on the particular computation of 3D information, different representations
flow may be useful. For example, instead of attempting accurate egomotion estimat
from optical flow, the approximate directions of translation and rotation can easily be ¢
tained from patterns of the sign of the normal flow [10]. Instead of reconstructing tl
scene in view, it is computationally more feasible to derive less powerful shape repres
tations sufficient for particular tasks, for example representations which only describe
gualitative shapes of scene patches, or we can obtain an ordering of surface patches
respect to their depth values [11, 12]. Also, instead of attempting segmentation dire
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from image measurements, segmentation may be performed only in conjunction with of
tasks.

6. CONCLUSIONS

This paper has analyzed the statistics of optical flow estimation. Noise in the data pc
serious problems for the estimation of flow. The reason is that noise affects both the sp
and temporal components of the image measurements (that is, both the direction an
length of one-dimensional velocity measurements). To estimate flow well, the noise
rameters need to be estimated accurately. In many situations this is impossible becaus
parameters are not static, but change with the viewing and lighting conditions, often
rapidly to collect enough data to obtain good estimates.

An unfortunate consequence of the unknowability of the noise parameters is bia:
the flow estimates. Many flow estimation techniques have been analyzed here, inclu
gradient-based, energy-based, and correlation methods. It was found that most techn
produce consistent bias; the estimates tend to be smaller in length and closer in direc
to the dominant gradient direction in the patch than the actual values. A bias of this fc
also provides an explanation for the illusory motion perceived by humans when view
the Ouchi pattern and for erroneous estimates in the perception of plaid motions.

Although it has long been known that the estimation of optical flow is a very difficu
problem (and if formulated in the classic way, an ill-posed one), this paper for the fi
time points out one of its inherent computational problems. The point of our study
been to argue for a reevaluation of the role of flow estimation in 3D motion processil
Optical flow estimation should not be carried out in isolation but in conjunction with tr
higher-level processes of 3D motion and scene interpretation. This way of looking at
“motion pathway” [48] might stimulate new research on structure from motion.

APPENDIX A

Conservation of Phase

Assuming constant local phase, [Bt1, G,| represent the real and complex parts of
some local Fourier transform. Define the raBgl /G, component-wise so that

Gyl G1l (wx, oy, wx, X, ¥, t)

—_— ) ) , X, 5t = ’
GZ| (a)x Cl)y Wi y ) G2|(a)x,wyv wt, X, y, t)

It is not assumed th%—i = 0 but rather that

Per Al
S =o. (A1)

Using the usual rule for differentiation of a quotient, we obtain

621 25 — 61551
(G2l)?

=0, (A.2)

Where G»l)? is a product that is defined component-wise.
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Expressions such d3G; | /(Dt) can be rewritten in terms of partial derivatives:

DGl _ 4Gl 9Gjl . Gl
= v
Dt o dy ot

Hence (A.2) can be rewritten in the form given by (5).

The only remaining problemis the noise analysis of (A.2). We apply (A.2) to one particul
sextuplet of independent variables( wy, o, X, Y, t) and analyze the noise there. Assume
that G1l, G2I are known with reasonable accuracy, but that the derivatives are hard
estimate. The derivatives of both;| and G,1 are noisy. Let the variance in the noise
of DG;1/(Dt) beoéj. Let us also assume that tiEG; | /Dt noise and théD Gl /(Dt)
noise are not correlated with each other. Then the variance in the left-hand side of (£
is (0&,/(G21)?) + ((G11)?04,/(G21)*). As a crude approximation, one might say that the
variance in the left-hand side of (A.2) is inversely proportional to the square of the amplitu
(i.e., directly proportional to (611)? + (G21)?) ™). (Assumesd, = 6&,. Then the noise is
directly proportional to a quotient whose denominatorGsl()* and whose numerator is
just the squared amplitude of ti&transform.)

One might apply (A.2) to estimate the flow in the vicinity of some poiat o, to). In
that case we fix the spatial parameters soxhatxg, y = Yo, t = to butwy, wy, w; canvary
through all possible frequencies. It makes sense to assume that the errors in the obsery
of DG;j | /Dt at the different frequencies are independent. It also makes sense to assume
Uél’ 0(232 is independent of frequency. So in computing the weighted least squares solu
to (5), the weights need to be inversely proportional to the variances [24] and thus dire
proportional to the squared amplitude.

APPENDIX B

Bias if the Noise is Gaussian

Here we present a nonasymptotic argument for the statement that ordinary least squ
estimates tend to be underestimates. We assume that the different Hisé®;, 5C
are independent and identically distributed. We also need to assume that the probal
distribution of the noise given the known data is Gaussian.

First consider the one-dimensional case, so that aBthe 0. To simplify matters further,
assume thatC; = O for alli andA; = 1 for alli. Then the estimated value ofis just the
ordinary average:

_ Ei Ci
= m (B.1)

u

If the actual value of flow in the&-direction isu’, then
A=—, (B.2)
so that

A — A= . (B.3)
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We want to say something about the probability that the actual flow ix-thieection
has some value’ given thatA andC have the values they do. It will be convenient to
argue not directly in terms of probability, but instead in terms of an energy functiém. If
is the probability of some event, then by definition the enéfgg given by the relation
Pr=k,e %T whereky, k, are constants of no interest to us.

We know that the energy can be written as

£(%54)) ©9

(B.5)

(Ci —u)?+ (u—u)?+2(u—u)(Ci —u)
= ZI: (u/)Z :

But > (Ci — u) = 0 by definition of the average. So the energy function considered .
a function ofu’ is a monotonically increasing function ofl{((+ (u — u’)?)/((u’)?)) where
T= % >~.(Ci — u)? andT does not depend aul. Heren is the number of indiceis over
which we are summing. So if coordinates are chosen suchutka®, then fors > 0, the
energy function is less it = u+ s than if U = u — s, and thus it is more likely that
U — u = s than thatu’ — u = —s. In other words, the estimate is more likely to be too
small than too large.

The same argument works if we remove the constraintdhat 1. In this case the energy
function is

Ci — AU 2 (Ci — A U)2+(Aiu — A U/)2+2Ai (U — U/)(Ci — A.U)
>(55) -2( )

u (U’)Z

(B.6)

By definition of the least squares solution;, AiC; = > ; Ai Aiu. The energy function is
now a monotonically increasing function off((&+ t2(u — u')?)/((u')?)) whereT andr are
expressions that do not dependwnand we can draw the same conclusion as before.

Now consider the problem in two dimensions. Choose coordinates so thdt, and
assume thaiC = §B = 0. Then we must have

Ci — Bv/
N B L (B.7)
and

A= 0 (B.8)

Thus the energy function is
Z Ci—Biv/—AiU’ 2
i v

(B.9)

(C = Biv' — AU + AU —U)? + 2A (U — U)(Ci — B — Au)
> ()

Taking into account the fact that; A/Ci = >, A?u, we can see that the energy function
can be written in the formT + 72s? + Qu’s)/((u’)?) wheres =u — U’ andT, 7, Q are
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not dependent on’, v'. So let us fix the value dg| and the value ofv’| and again choose
coordinates so that > 0 and take advantage of the fact that the expression for the ener
is simple.

The energy function is a fraction. There are two possible values for the numerat
T + 728>+ |Qu's| and T + 72s?> — |Qu’s|. Let us call these two valuag > gp. There
are also two possibilities for the denominator—call thems- r, > 0. If s < 0, the energy
can beq,/ry or gz/r1. If we replace the denominator by r,, we obtain the possibilities
that arise whes > 0, but if we replace the denominatarby r,, we increase the energy;
therefore, itis less probable theis positive than that it is negative. This argument assume
the values ofs|, |v’| to be fixed, but it does not matter what they are equal to. Hence mo
likely than nots is negative and we have an underestimate.

Let us generalize still further by allowint3; # 0. Then we can let th&B; be arbitrary.
We have

Ci — BV

A= (B.10)

Thus the energy function is

B Ay 2
Zu(asi)2+(—c' = A'“) =Y (B

(B.11)

(Ci — Blv' — Alu)® + A?(u — U)? + 2Ai (u — U)(C; — B/v/ — Alu)
t2 )2 '

Herev is a weight that depends on the variance of the noise ig-tthieection. Choose three
quantitiesky, ko, andKs. The first two quantities are scalars and we reqsire= |k;| while
|v'| = |ko|. Here, as befores = U’ — u. K3 is a vector and we require that eithiB = K3
or §B = —K3. An argument similar to that given in the next to last paragraph shows that
is less likely thas > 0 than that < 0, and this argument depends in no essential way o
the particular valuek, ky, K3 chosen.

The final generalization allows there to be noise in@GheWe have

C/ — BV

A= (B.12)

Thus the energy function is
C/ — BV — AU\ ?
D 11(8B)? + v2(8Ci)% + (%) = zlj 1 (8B)% + Z.: 12(8C;)?

(B.13)

(C/ — Blv/ — Alu)? + A?(u — U")? + 2A (U — U)(C/ — B/v/ — Aiu)
2 Wy '

Herevs, v, are weights. Again use the fact tha}, ACi = >, A?u. We see that the energy
function can be written in the form

T+ 12% + Qu's+ (Z, Ai5Ci)s

R+ )2

(B.14)
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HereR, T, 7, Q donotdepend ou', v'. Again an argument that temporarily fixes the values
of certain quantities can be used. Namely, we need to fix the valugss, ¢#'|, and find
noise vectorKs, K4 and require that eithéyB = K3 or §B = —K3, and similarly either
8C = K4 or §C = —K4. Again, we can show that underestimation is more probable the
overestimation.

APPENDIX C
Expected Value of the Least Squares Flow Solution
The expected valug(u) of the least squares solution is given by

E(u) = E(E'E)"}(E'C)).

As the noise is considered independent and zero-mean, all the first order terms anc
second order terms in the temporal noise vanish, and thus the expansion at point r
N =0 (i.e.,6 Ay = §B; = §C; = 0) can be written as

Ew = u +Z (aSAZJ («SZA%) N aiZE:ZJNZOE(ZBF))

N=0

For notational simplicity, we define

M=E'E and b=E'C
M/ — E/t E/ b/ — E/Ic/.

Using the fact that for an arbitrary matr@

—-3Q~ 1

lQl
~—=Q7=Q

We find the first order and second order derivatives to be

3U _ —1 2A| Bi —1 -1 Ci
oA - M [Bi O}M b+M™ 1y
8%u .[2A B, i:[2A B,,.:
aaA?_ZM [Bi O]M {Bi O]M b
(2 0, _1[2A Bi],,.1[Ci
_ 1 1 1 i 1™
M {0 O}M b 2Mm [Bi O}M M

and similarly, we have symmetric expressions for

au 92u
— and —.
95 B; 95 B2
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Since we assumg(§ A?) = E(5B?), the expansion can thus be simplified to

E(u)=u —nM~o?

+Z 1 |2A B M/-1 2A B N 0 A M1 0 A
i B 0 B 0| |A 2B A 2B
_M/fl 2AI/ BI/ -1 CI, + 0 AI/ M/fl 0 632’
B 0 o| " |A 28 C/

where we have underlined the term that diminishes proportionallél tarheren is the
number of measurements being combined in a region). The sum ofrthesas will give

a consistent, statistically constant response. The rest of the terms diminish proportion
to 1/n?. Informal experiments show that the sum of these terms becomes negligible
n > 5, a number clearly smaller than the number of terms likely to be combined in any r
system.
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