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When processing image sequences some representation of image motion must be
derived as a first stage. The most often used representation is the optical flow field,
which is a set of velocity measurements of image patterns. It is well known that
it is very difficult to estimate accurate optical flow at locations in an image which
correspond to scene discontinuities. What is less well known, however, is that even
at the locations corresponding to smooth scene surfaces, the optical flow field often
cannot be estimated accurately.

Noise in the data causes many optical flow estimation techniques to give biased
flow estimates. Very often there is consistent bias: the estimate tends to be an un-
derestimate in length and to be in a direction closer to the majority of the gradi-
ents in the patch. This paper studies all three major categories of flow estimation
methods—gradient-based, energy-based, and correlation methods, and it analyzes
different ways of compounding one-dimensional motion estimates (image gradients,
spatiotemporal frequency triplets, local correlation estimates) into two-dimensional
velocity estimates, including linear and nonlinear methods.

Correcting for the bias would require knowledge of the noise parameters. In many
situations, however, these are difficult to estimate accurately, as they change with
the dynamic imagery in unpredictable and complex ways. Thus, the bias really is a
problem inherent to optical flow estimation. We argue that the bias is also integral to
the human visual system. It is the cause of the illusory perception of motion in the
Ouchi pattern and also explains various psychophysical studies of the perception of
moving plaids. c© 2001 Academic Press
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1. THE PROBLEM

1.1. Errors Matter

A serious problem with optical flow computation is that the flow must be estimated using
noisy data, and it is often not possible to accurately estimate the noise parameters. Because
there is noise, the estimated and the actual flows can be different. Worse, the estimate often
is biased; the expected value of the difference between the actual and estimated flow is not
zero. Confidence limits are also difficult to predict, and they matter because the variance of
the flow can be large.

It will be shown here that many commonly used methods for computing optical flow
are biased. It is difficult to correct for this bias because it is difficult to estimate the noise
parameters. It might be possible if the parameters were static, but instead they change in
unpredictable and complex ways. If we had enough data, we could use various statistical
techniques to estimate the parameters; for example, we could use maximum likelihood. But
when we first view a scene, there is not enough data. When the environment changes, when
the lighting conditions have changed recently or there has been a significant recent change
in orientation which produces a change in the accuracy of the constraint that corresponding
points have the same intensity, there is not enough data about the current values of the noise
parameters.

In this paper we analyze all three major classes of optical flow algorithms: gradient
methods, frequency-domain methods, and correlation methods. We analyze both linear and
nonlinear estimation techniques, as well as some robust methods. In some of our analyses
we do not make either a Gaussian or an asymptotic assumption.

1.2. Bias

There has been previous work on optical flow that analyzes error. Examples are [20,
34, 39, 45]. However, it has not been widely noticed by the computer vision community
that optical flow estimates can be biased. It has been pointed out in [30] that optical flow
estimated using gradient methods is biased: estimates tend to be underestimates. As we shall
show here, even the estimates of the direction of flow are not unbiased. We also demonstrate
here that it is not just gradient methods that result in biases. The mathematics of frequency
domain methods is not very different than that of gradient methods and similar biases arise.
Finally, we present a model that shows how even correlation methods can be biased and tend
toward underestimation. Thus all these methods produce biases. It is not often appreciated
how difficult these biases are to correct.

We conclude by arguing that more robust and more qualitative methods should be used
for estimating optical flow and that the estimation of optical flow should be combined with
the estimation of three-dimensional information.

1.3. Optical Illusions

The inevitability of bias provides an explanation of certain well-known optical illusions.
In particular, we provide a computational model for the Ouchi illusion.
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FIG. 1. A pattern similar to one by Ouchi [31].

The striking illusion discovered in 1977 by the graphic artist H. Ouchi consists of two
black and white rectangular checkerboard patterns oriented in orthogonal directions—a
background orientation surrounding an inner ring (Fig. 1). Small retinal motions, or slight
movements of the paper, evince a segmentation of the inset pattern and motion of the inset
relative to the surround. The illusion occurs for a variety of viewing distances and angles.
Some observers report an apparent depth discontinuity, with the center floating as it moves
above the background [36].

Our explanation of the illusion lies in the estimation of differently biased flow vectors in
the two patterns. Because of the sparse spatial frequencies in these checkerboard patterns
the bias is highly pronounced. In the following two different 3D motions are derived which
cause the inset to move relative to the surround. Our model for explaining this illusion is
given in Section 4 along with a set of illustrations.

1.4. A Formulation of the Flow Estimation Problem

The rest of this paper is a detailed exploration and examination of the themes mentioned
above. In order to proceed further, it will be necessary to discuss in somewhat more technical
detail exactly what is meant by flow and the kinds of methods for estimating flow that we
are interested in analyzing.

It is assumed that a sequence of two or more images of a scene is available. If in the real
world, whatever is at pointP1 at timet1 is found at pointP2 at timet2, and pointpi is the
image of real-world pointPi in imagei , then image pointsp1 and p2 will be said to be
corresponding points.

A basic assumption is that there exists some attribute that has the same valueI at the
two corresponding image points,p1, p2. The valueI might be the intensity of light at a
point p in the image or the intensity of light of a given frequency. ButI might also be
something somewhat less local, such as the (weighted) average value of light intensity in
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some regionR of the image. In computing the average, points that are nearest top have
the most weight. The valueI might be assumed exactly known, orI might be modeled
as being measured with a certain amount of error. The error may often be very large, but
it is assumed that the value ofI is the same at corresponding points and that this value is
known with reasonable accuracy at a significant number of points. (Later we discuss more
general constraints where theI ’s at corresponding points are not equal, but instead there is a
linear relation between the values ofI at corresponding points.) Of course, despite the long
tradition in computer vision of assuming exactly equal values at corresponding points, there
is no meaningful physical quantity that is going to have exactly the same value at two cor-
responding points. But the statistical modeling below will take into account error in the
constraint and realize that some of the error is due not to noisy observation but to imperfect
constraint. Given the difficulty of making locally accurate flow estimations and the large
amount of noise involved in any case, it is reasonable to work with the assumption of equal
I at corresponding points.

If p1 at time t1 and p2 at time t2 are corresponding points, there is a two-dimensional
motion fromp1 to p2. It makes sense to speak of the velocity of this motion. If the difference
between the timest1 andt2 is infinitesimal, one speaks of the instantaneous two-dimensional
velocity or optical flow.

The constraint that some attribute have the same value at corresponding points is not
enough. Other constraints must be employed in order to actually estimate flow. These
additional constraints usually amount to models of the 2D velocity field, for example,
constraints on the sizes of the derivatives, or parametric models of the velocity field.

To simplify the analysis, initially we will focus on the simplest special case where the
flow is the same at all positions in the image or at least constant in some large region of the
image. To further simplify matters, it will be assumed that special problems due to the fact
that certain pixels are near the boundary of an image can be safely ignored.

1.5. Methods of Computing Optical Flow

There are three primary classes of methods for computing optical flow: gradient-based
methods, frequency-domain methods, and correlation methods. Gradient-based and
frequency-domain methods derive optical flow in two separate stages: first, information
about the one-dimensional motion components of local edges or single spatial frequencies
is obtained; then, the individual measurements within some neighborhood are combined
into an estimate of optical flow. These two classes of methods are faced with similar noise
issues and thus can be given a very similar mathematical analysis. Correlation techniques
perform region-based matching and in general cannot be separated into one-dimensional and
two-dimensional components. Thus, they will be given a separate analysis that is somewhat
different, but not very different.

Gradient-based techniques [8, 22, 40, 44] compute the spatial and temporal derivatives of
the intensity or functions of the intensity. These measurements define at individual points the
component of flow perpendicular to edges, the normal flow. To derive these measurements
the images are usually smoothed in space and time with low-pass filters and numerical dif-
ferentiation is performed. Then the optical flow is computed from the local one-dimensional
measurements in a neighborhood using assumptions about the smoothness [9, 21, 22, 27–29,
41] or an explicit model (such as polynomial) of the underlying flow field. The estimation
amounts to solving an optimization problem minimizing some function of deviation from
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the model; if the flow field is assumed to be constant, least squares or weighted least squares
estimation is often used [25, 34], but other techniques such as total least squares [45], or
robust techniques, can alternatively be used. If more elaborate smoothness assumptions are
employed, iterative techniques must be used.

Energy-based techniques [1, 2, 4, 20] are based on the constraint that all the energy of
a translating pattern lies in a plane through the origin in spatiotemporal frequency space.
Usually, the energy for a number of spatial and temporal frequency triplets is extracted by
means of spatiotemporal energy filters of different kinds. Computationally this results in
taking a local Fourier or related transform and it requires some smoothing and interpolation
either in space-time or in the frequency domain. Since energy can only be extracted within
regions, the implicit assumption is that the flow field is constant within the range of the filters.
The fitting of the plane to the estimated energy responses again amounts to an optimization
problem which can be solved by linear estimation, but more often is addressed using total
least squares estimation.

Another approach to flow estimation in frequency space is based on the assumption that
phase is preserved [14]. In this case the phase response for spatiotemporal frequencies is
computed using energy filters and then the spatial and temporal derivatives of the phase are
estimated to obtain one-dimensional motion components.

Correlation techniques [6, 7, 26, 47] have mostly been used in the processing of stereo
images where one component of the displacement is defined by the epipolar constraint and to
establish sparse feature correspondence when far-apart views obtained by a moving camera
are considered (discrete motion). They have also been used to derive dense correspondence
fields and optical flow fields. Correlation techniques compare regions of usually large extent
in the two images to find the displacement between the regions which provides the best
match. A measure of similarity is computed between regions centered at discrete (pixel)
locations and the exact displacement is then estimated by interpolation between the discrete
positions. Similarity may be measured using cross-correlation, which may be normalized,
or using a distance measure such as sum-of-squared-differences. It is then necessary to find
the displacement that maximizes the correlation or minimizes the distance measure. By
considering large matching regions it is implicitly assumed that the correspondence field is
constant, and the aperture problem is circumvented in this way. There are also correlation
techniques for flow which match small image regions and thus face the aperture problem.
In this case local correlation surfaces are combined via smoothness constraints to estimate
the optical flow field [3, 35].

2. GRADIENT-BASED AND FREQUENCY-DOMAIN METHODS

Gradient-based methods and frequency-domain methods use essentially the same con-
straint; the frequency-domain constraint can be obtained from the gradient constraint by
taking a Fourier transform. For both methods the constraint is encoded as an overdetermined
system of noisy linear equations. There are many techniques for solving such a system of
equations. Many different approximations can be employed. Many different methods exist
for handling the noise. But in any case, there will be a noise term that comes from an in-
accurate estimate of the spatial derivatives and a noise term that comes from an inaccurate
estimate of the temporal derivative. The bias will arise because we cannot obtain a good
estimate of the ratio of these two noise terms.
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We proceed by providing a general framework for the basic constraint equation which de-
scribes the one-dimensional motion components of single spatial frequencies (Section 2.1).
We then describe three classes of estimation techniques for solving a system of these equa-
tions: ordinary least squares (Section 2.2) and total least squares (Section 2.3), and we also
sketch some robust techniques (Section 2.4). A discussion of models that do not assume
constant flow (Section 2.5) and a summary (Section 2.6) conclude the section.

2.1. The Constraint Equation

If I is the attribute value that is constant at corresponding points, then

DI

Dt
= ∂ I

∂x
u+ ∂ I

∂y
v + ∂ I

∂t
= 0, (1)

wheret represents time andx and y represent two different Cartesian coordinates. The
lettersu andv represent thex and y components of the flowu, respectively. Of course,
our observations of these derivatives are inevitably going to be highly noisy but that fact is
incorporated in our noise model. The mathematical issue of whether these derivatives exist
is not a real issue. Both in the real world and the image domain, we smooth or average a
small amount before we do anything else.

We first consider the simplest statistical model. Equation (1) cannot be expected to be
strictly valid. More reasonable would be

DI

Dt
= ∂ I

∂x
u+ ∂ I

∂y
v + ∂ I

∂t
= ε. (2)

Hereε is a noise variable that might be assumed to be zero-mean Gaussian.
There is another interpretation of this equation; one might assume that (1) is exactly true

but one cannot observe the temporal derivative∂ I
∂t with perfect accuracy. Instead one can

only observe∂ I
∂t + ε whereε is some noise variable that might be zero-mean Gaussian.

Later we assume there are also errors in the observation of the spatial derivatives, and these
terms cause the main difficulties, but we ignore these terms for a while in order to simplify
the analysis.

Equation (1) (or (2)) is really many equations. There is one equation for each point in
the image, or one equation for each point where the data are reasonably accurate, and to
indicate the dependence ofε on the pointp of observation we will writeεp in (2).

We assume the flow is constant over the region of interest. If the differentεp’s have the
same statistical distribution and are independent, zero-mean Gaussian variables, then the
maximum likelihood solution is obtained by using least squares: Find theu, v that minimize
the expression

∑
p ε

2
p.

Even if theεp’s are not Gaussian, but the differentεp’s have equal variance and all
the different noise variables are uncorrelated, then the least squares solution is the best
linear unbiased estimate (BLUE) [24, 43]. We explain now what being BLUE means. Let
unprimed letters represent estimates and use primes to indicate that actual quantities are
being referred to. Being unbiased means that the expected value ofu− u′ is zero. (The
ordinary least squares estimate is not unbiased if there are errors in the measurement of the
spatial as well as the temporal derivatives.) To say that the BLUE estimate is linear is to say
that it is linear in the observed values of the temporal derivatives∂ I

∂t . For an estimate to be
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the best means it is the best with respect to some measure or metric. Goodness is measured
by the expected value of‖u′ − u‖2. Here‖ ‖ means the length of a vector.

It is significant that the BLUE estimate need not be the best linear estimate, only the best
linear unbiased estimate [23]. The classical James–Stein [23] best linear biased estimate
actually is relevant only for estimation of ann-component quantity withn > 2. In that case,
it makes sense to use a biased estimate (an estimate that is known to be an underestimate)
in order to reduce the variance of the estimate and thereby reduce the expected size of the
error.

Flow has only two components, but if the error in (1) is nonzero mean [17], while the
differentεp’s are uncorrelated and identically distributed, then there is a three-component
unknown; there are two components of flow and the third component is the mean value of
εp, and we do have to estimate the mean value ofεp in order to compute flow. If there is
a change in the global ambient illumination,εp will not be zero-mean. Later we will relax
the assumption that flow is constant, and then we will have more than two components to
estimate, so James–Stein biased estimation is relevant.

2.1.1. A parenthetical remark about how to handle correlated error.Even ignoring the
possibility that the best linear estimate is biased rather than BLUE, we see that there are other
problems. If the various noisesεp are not uncorrelated or the different noise variables have
different variances, it is first necessary to apply a whitening transformation before computing
the ordinary least squares solution. If we wish to solve a system of equationsLi = 0 with
correlated error, then we must first multiply by some matrixQ such that

∑
j Qi j L j = 0

is a system of equations with uncorrelated errors of equal variance. Considering the set of
expressionsLi as a vector, we need to solveQL = 0 using ordinary least squares. In order
to actually apply the whitening transformation to (1), we need to know something about
the statistics of theεp. In practice, it might be difficult to accurately estimateQ. We will
ignore this problem.

2.1.2. Preprocessing by linear smoothing.A problem arises because we cannot even
apply (1) unless we can make reasonable estimates of certain derivatives ofI . Since, in any
case, it is difficult to estimate pointwise spatial and temporal derivatives, it makes sense to
apply some kind of linear operation before solving for the flow. In fact, letG be a linear
operator and pretend thatI , which is a function of one temporal variable and two image
spatial variables, is defined on all ofR3, so that

GI (x, y, t) =
∫ ∫ ∫

Gx,y,t (a, b, c)I (a, b, c) da db dc. (3)

Furthermore let us assume thatG is a convolution, so that the coefficientGx,y,t (a, b, c)
depends only on (x − a, y− b, t − c). Then if flow is constant, from the fact that the
derivation and convolution operators commute, we can conclude that

∂GI

∂x
u+ ∂GI

∂y
v + ∂GI

∂t
= 0. (4)

Like (1), (4) is only approximately correct. Equation (4) normally makes little sense unless
u, v are constant, but if the convolution is very local so thatGx,y,t (a, b, c) is very small
unless (x, y, t) and (a, b, c) are very close, then it makes sense to apply (4) at a point (x, y, t)
even if flow is not constant everywhere but only approximately constant in the vicinity of
(x, y, t).
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If (1) has Gaussian error, so does (4). If the errors in (1) are uncorrelated, that need not
be true of (4).

For an interesting special case of (4), letG be a Gaussian smoother. In fact,G might be an
ordered set of smoothers. Equation (4) makes sense ifGx,y,t (a, b, c) is a real vector rather
than a real scalar. A two-component real vector can be reinterpreted as a complex scalar.
This will allow the Gabor transform to fit into the schema of (4) and be relevant when we
discuss frequency-based methods.

2.1.3. Application of linear transformations to I .We might apply the Fourier or some
other linear transform toDI

Dt considered as a function of position in space-time. A Fourier
transformation is a convolution by a set of exponential functions. It is especially sensible
to apply the Fourier convolution rather than some other convolution because by Parseval’s
theorem, the quadratic norm is preserved under Fourier transformation. This means that if
f is a complex function andf ∗ its complex conjugate and‖ f ‖22=

∫∫∫
f (x, y, t) f ∗(x, y,

t) dx dy dt and F represents the operation of computing the Fourier transform, then
‖F f ‖2 = ‖ f ‖2. Thus it does not matter whether we compute the least squares solution
in the frequency or the space domain.

In more detail, letting subscripts represent partial differentiation, we start with the
equationIxu+ I yv + It = ε. Taking the three-dimensional Fourier transform (the three di-
mensions being time and the two spatial dimensions of the image) and lettingωx, ωy, ωt rep-
resent the spatial and temporal frequencies, we obtain the equation (ωxu+ ωyv + ωt )F I −√

(−1)Fε= 0. To minimize theL2 norm ofε is the same as minimizing theL2 norm ofFε
and this would be the same as minimizing theL2 norm of (ωxu+ ωyv + ωt )F I . This means
we need to find the flowu, v that defines a plane with pointsωx, ωy, w (that is for every
ωx, ωy, ωt there isw for whichωxu+ ωyv + w = 0) such that theL2 norm of the product
(ωt − w) timesF I is minimized. In other words we need to minimize a weighted sum of en-
ergies; for each triplet of frequencies (ωx, ωy, ωt ) that is off the planeωxu+ ωyv + w = 0
corresponding to the flowu, v we multiply the energy in that frequency by a weight that is
the distance squared (ωt − w)2.

Another possibility is that there is noise in the estimation of the derivatives, both spatial
and temporal. Then we would have the equation (∂ I

∂x u+ ∂ I
∂yv + ∂ I

∂t )− Nxu− Nyv − Nt = 0
where theN’s represent noise. Given data about the observedI (in the equation above,I
represents the observedI ), we want to estimate the flowu, v and the noiseNx, Ny, Nt in
such a way as to minimize‖Nx‖22+ ‖Ny‖22+ ‖Nt‖22, where again the subscripts indicate
theL2 norm (this corresponds to total least squares estimation).

Taking the Fourier transform, we obtain (ωxu+ωyv+ωt )F I −√−1(FNxu+FNyv+
FNt )= 0. Here the noises in the Fourier domain are functions of frequency. We di-
vide the noise by

√−1F I to obtain appropriate noise variablesm for which we can
write ((ωx +mx)u+ (ωy +my)v + (ωt +mt ))F I = 0. We have to chooseu, v, N to
minimize ‖FNx‖22+ ‖FNy‖22+ ‖FNt‖22, or equivalently minimize

∫
((|mx|2+ |my|2+

|mt |2)|F I |2), the integral being taken over all tripletsωx, ωy, ωt . That is the triplets
(ωx +mx, ωy +my, ωt +mt ) lie on the plane that defines the flow and we measure the
sum of the distances between these triplets and the triplets (ωx, ωy, ωt ) (the normal dis-
tances to the plane) times the energy at each frequency.

Alternatively, we might want to compute only local Fourier transforms. And inevitably,
we lose some information because we do not have an infinite image or a continuous set
of observations, but that just adds additional noise in certain frequencies and forces us to
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deal with local transforms. Let us multiplyI by a GaussianG centered at pointP or by a
functionG that it is equal to 0 at points far fromP and equal to 1 nearP and then take the
Fourier transform. The effect on (1) is to give less weight to data at points far fromP when
computing the least squares solution. The noise is also multiplied byG. In the frequency
domain, instead of multiplying the noise byG, we convolve the Fourier transform of the
noise by the Fourier transform ofG. But the Fourier transform of a Gaussian is also a
Gaussian. In other words, we minimize an expression very much like that in the previous
paragraph, but here we first multiplyF I by a distance, then smooth the result by convolving
with a Gaussian, and finally compute anL2 norm which must be minimized.

In Appendix A we analyze relevant weighting functions for phase-based methods [14].
Such methods are based on the assumption of conservation of local phase which is estimated
using the Gabor transform or some local Fourier transform.

In practice, Fourier or even Gabor transforms might be too hard to compute, so one com-
putes some finite approximation, but still uses the idea of minimizing something involving
the product of a distance function and an energy function.

In any case there is an equation of the form

Ai u+ Bi v = Ci (5)

for each indexi where the indices usually represent points in space-time or frequencies in
some kind of transformation space. Often (5) is solved by a kind of ordinary least squares.
Alternatively it may be solved with total least squares, a method that allows for errors in
the observations of the spatial derivatives ofI , or some more robust method. It may first be
necessary to apply a whitening transform in order to handle correlation between the errors
of different equations, but for the most part we will ignore that possibility.

2.2. Errors in the Ordinary Least Squares Solution

Let us first analyze the simplest method of solving (5): ordinary least squares. In the
following, unprimed letters are used to denote estimates, primed letters to denote actual
values, andδ’s to denote errors, whereδA = A− A′, δB = B− B′, andδC = C − C′.

Let n be the number of indicesi to which (5) applies. In order to explicitly represent the
errors the equation is rewritten as

(Ai − δAi )u+ (Bi − δBi )v = Ci − δCi . (6)

It is also convenient to explicitly represent the equation in matrix form

(E − δE)u = C− δC. (7)

HereE andδE aren by 2 matrices which incorporate the data in theAi andBi . The vector
u denotes the flow whose components areu andv.

By definition the least squares solution is given by

u = (Et E)−1EtC. (8)

If there are no errors in the estimation of the coefficientsAi andBi , then under the usual
assumptions that the differentδCi are uncorrelated and have the same variance, least squares
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gives an unbiased estimate and it is also simple to give confidence limits for the solution.

ρ = ‖C− Eu)‖22
n− 2

(9)

is an unbiased estimator of the variance of theδCi [15, 24] where‖ ‖2 represents the
quadratic norm defined on vectors (i.e., the square root of the sum of the squares of the
values of the components of the vector) andu represents the ordinary least squares solution
to (5).

If we use a weighted least squares solution instead of the ordinary least squares solution
and the weights are positive, then if ((wi )1/2)2 is the weight of equationi , the weighted least
squares solution is the same as the ordinary least square solution that would be obtained if
we putw1/2

i Ei j andw1/2
i Ci in place ofEi j andCi , in (5). So even in this case it is possible

to estimate the variance of the error in the flow estimate.
But, in fact, these error estimates should be modified to take into account the bias. There

will be errorsδAi , δBi and these errors will cause the least squares estimate of the flow to
be biased.

It is well known in the statistics community that the usual effect of the errorsδAi , δBi

(i.e., errors in the matrixE) is to produce an underestimate of the magnitude ofu [15, 18,
37], and the bias also affects the estimate of the direction.

In the following, for two somewhat different models, this bias is demonstrated. In both
cases it is assumed that the errorsδEi andδCi are independent, that there is no correlation
between the spatial (δEi ) and the temporal (δCi ) noise and no correlation between the noise
and the data. The difference lies in the assumptions about the conditional probability of the
noise and the additional assumption of Gaussianness in one of the models.

In the first case (Section 2.2.1) it is assumed that the noise is symmetric around the
actual values. That is, givenE′ and C′, the distribution of the noiseδE = E − E′ and
δC = C − C′ is assumed to be symmetric, but not necessarily Gaussian. In this case there
is a downward bias, but only if there is a sizeable number of measurements.

In the second case (Appendix B), what is assumed is symmetry of the noise around the
estimated values; given the known dataE andC, there is a Gaussian probability distribu-
tion for the errorsδE andδC. In this case there is a downward bias for any number of
measurements.

2.2.1. Bias for noise symmetric around the actual values.First we explain why, in the
case of very few measurements, the bias is an overestimate of the magnitude ofu.

This can be seen by considering the simplest linear system, one equation with one un-
known.Eu= C whereE 6= 0. The ordinary least squares solution for this equation is the
same as the equation obtained by simply dividingC by E.

Let

u′ = C′

E′
,

where primes represent actual values. The estimated solution is

C

E
= C′ + δC

E′ + δE
.
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The expected valueE(u) of the value of the estimated solutionu is the expected value of

C′

E′ + δE
.

δE (andδC) are assumed to be symmetric in the sense that, for any real numbers, the
probability thatδE = s is the same as the probability thatδE = −s.

Now temporarily make the special assumption that|δE| = s< |E′|. Then the expected
value ofu is just the expected value of

C′

2

(
1

E′ + s
+ 1

E′ − s

)
= C′E′

(E′)2− s2
(10)

which is greater than the absolute value of the actual solutionC′E′/E
′2 if s 6= 0.

If there is a large number of equations, there is a simple argument (see e.g., [38]) that
the ordinary least squares solution is downward biased. This argument is essentially an
asymptotic argument. The least squares solution is the ratio

u = (Et E)−1EtC. (11)

We have

u = (((E′)t + (δE)t )(E′ + δE))−1(E′ + δE)t (C′ + δC). (12)

If there is correlation between the temporal noiseδC and the spatial noiseδE, this
correlation can affect the expected value ofu. If, however, the expected values ofδC and
δE are zero, andδC andδE are independent and also independent ofE′ andC′, then the
expected value of the least square solution is just the expected value of

(((E′)t + (δE)t )(E′ + δE))−1E′tC′. (13)

But this expression can be rewritten as

((E′)t E′ + (δE)tδE + (E′)tδE + (δE)t E′)−1E′tC′. (14)

The argument is that if there are enough equations then this last expression can be closely
approximated by

((E′)t E′ + (δE)tδE)−1E′tC′. (15)

This is because terms of the form (δE)t E′ are likely to be small if there are many equations
in the system we are solving using least squares. The elements of this product matrix are
of the form

∑
i δEi j Eik . If there are enough equations, these sums should be small if the

expected value ofδEi j = 0.
We next remind the reader of a partial order defined on real matrices that generalizes the

usual ordering of the real numbers. We use this partial order to define relative size.
Write M > 0 if M is a positive definite matrix. WriteM > N if M − N > 0 whereM

andN are two matrices, and similarly forM ≥ N.
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The order defined in this way generalizes the usual ordering of the real numbers and has
some of the same properties. Thus ifM1 > M2 andN > 0, M1N > M2N andM−1

1 < M−1
2 .

For any non-null vectorV such that the indicated multiplications make sense,‖M1V‖2 >
‖M2V‖2, where again‖ ‖2 is the usual quadratic norm. References to the matricesM , N
sayingM is of greater size thanN can be reinterpreted as meaning that ifMt M , Nt N are
both nonsingular thenMt M > Nt N.

We can derive the result that the matrix ((E′)t E′ + (δE)tδE)−1 is smaller than the matrix
((E′)t E′)−1. Multiplying by (E′)tC′, we get the result that ((E′)t E′ + (δE)tδE)−1(E′)tC′ is
smaller than the actual solution. Thus the expected value of‖u‖2 is smaller than the actual
‖u′‖2.

This argument for the case of ordinary least squares can also be applied to weighted least
squares provided there is a sufficient degree of cancellation of the noise.

We can also say something about the direction of the bias. We assume we are using a
gradient-based method only in order to simplify the description. Also, temporarily assume
that there are only two (nonparallel) gradient directions in an image. Then even if the two
directions are not orthogonal, it is easy to analyze the two-dimensional least squares problem
as two one-dimensional problems. Assume thatE andδE are written in a not necessarily
orthogonal coordinate system in which the directions of the two axes are the two observed
gradient directions. Then the direction in which there are more data (i.e., the direction in
which Et E is largest) is also the direction in which there is the largest signal to noise ratio
(i.e., the largest ratio ofEt E to δEtδE) But the effect of noiseε > 0 on 1/(x2+ ε) is
smaller the greaterx is. So there is less bias in the direction where there are more data and
more bias (i.e., underestimation) in the direction where there are less data, and thus there is
a bias in the direction of the estimated flow.

There are not actually only two gradient directions, but all that really matters is theE
matrix. Using a nonorthogonal coordinate system (i.e., rotating the two axes of the original
coordinate system by different amounts), we can makeE′ diagonal, which is equivalent
to assuming there were only two actual gradient directions. Similarly, we can assume that
E is diagonal if we use a nonorthogonal coordinate system. If there are enough equation
indices in (5), the two actual and the two observed gradient directions will be almost the
same.

The interesting conclusion that can be drawn at this point is that since many common
methods of computing optical flow essentially use ordinary least squares, there are many
methods that will produce consistently biased results, and no Gaussianness assumptions
are needed to derive that conclusion. More interesting, the bias is often an underestimation,
and is smaller in the direction of more spatial gradients and greater in the direction of fewer
gradients. It might be a good idea to try to estimate the amount of bias and then correct for
it or perhaps employ a method more accurate than least squares in the first place. But it is
not that easy to correct for the bias. One common technique used to correct for the bias is
total least squares, but as we shall now see, this method has its own problems.

2.3. Total Least Squares

The problematic bias arose because of error in theE matrix and thus in theEt E matrix.
Let us rewrite (5) in the form

Ai u+ Bi v − Ci = δAi u+ δBi v − δCi . (16)
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Even if u andv are known, there is no way of telling from theA, B, C data how the noise
is apportioned amongδA, δB, δC.

This is the main difficulty with total least squares: We have to know the relative amount
of noise in the spatial and temporal errors. If the two spatial and the temporal variances
of the noise are the same, then total least squares is approximately unbiased. Simulations
have shown that if the spatial noise is larger than the temporal there is an underestimation.
Otherwise, there is an overestimation. As discussed below, information about the noise
ratios is difficult to compute; it can be obtained only from the change in flow between
different regions.

Assuming again that theδCi , δAi , andδBi are independent of each other and also of the
dataA, B, C,

σ 2(δCi + δAi u+ δBi v) = σ 2(δCi )+ u2σ 2(δAi )+ v2σ 2(δBi ). (17)

Hereσ 2(x) is a function representing the variance of quantityx.
Given the total squared noiseN2

i = u2(δAi )2+ v2(δBi )2+ (δCi )2, the most likely allo-
cation of noise apportions the total noise so that

(δAi )
2 = σ 2(δAi )

u2σ 2(δAi )+ v2σ 2(δBi )+ σ 2(δCi )
N2

i , (18)

(δBi )
2 = σ 2(δBi )

u2σ 2(δAi )+ v2σ 2(δBi )+ σ 2(δCi )
N2

i , (19)

and

(δCi )
2 = σ 2(δCi )

u2σ 2(δAi )+ v2σ 2(δBi )+ σ 2(δCi )
N2

i . (20)

We chooseN2
i so as to minimize

∑
i N2

i under the assumptions thatN2
i = u2(δAi )2+

v2(δBi )2+ (δCi )2 and that (18) through (20) are valid. This is called the total least squares
solution.

The total least squares solution can also be obtained by choosingδAi , δBi , δCi so as to
minimize ∑

i

δC2
i

σ 2(δCi )
+ (δAi )2

σ 2(δAi )
+ (δBi )2

σ 2(δBi )
. (21)

For an extensive discussion of the total least squares solution and of other methods
involving errors in the variables, see [42]. An application of total least squares to optical
flow computation using gradient techniques is found in [45].

Under the assumption the variancesσ 2(δAi ), σ 2(δBi ), σ 2(δCi ) are known, interesting
simulation results and thoretical analysis of total least squares can be found in [16, 19].
What has been discovered is that the total least squares solution is approximately unbiased,
but there is a trade-off: less bias but more variance.

To solve the total least squares problem we need to solve the problem of minimizing the
expression

σ 2(δCi )

σ 2(δCi )+ σ 2(δAi )u2+ σ 2(δBi )v2

∑
i

(Ai u+ Bi v − Ci )
2. (22)



14 FERMÜLLER, SHULMAN, AND ALOIMONOS

Even though this solution is approximately unbiased, the solution cannot be computed
unless we know the variances ofδAi , δBi , δCi or at least know the ratio of the variances of
the spatial and temporal noises. It is difficult to obtain this ratio. Even if we knew the actual
constant flow we could not use theA, B, C data to determine how much of the blame for the
fact thatAi u+ Bi v − Ci 6= 0 is due to spatial noise and how much is due to temporal noise
without additional assumptions. It is therefore going to be necessary to assume something
rather questionable in order to obtain the necessary ratio of the spatial and temporal noises.
In other words, we have to augment the model we have used so far.

If the flow is not constant then the amount of noise is a function of the flow. The variance
of the total noiseAi u+ Bi v − Ci is u2σ 2(δAi )+ v2σ 2(δBi )+ σ 2(δCi ). If u varied as a
function of position, then if we knew the flow everywhere and if the statistics of the error
in the Ai , Bi , Ci were independent of position, we could solve for the necessary variances.
If we could obtain a reasonable, crude estimate not just of the flow but of the difference in
flow between different patches of the image, and this crude estimate were fairly reliable,
we could obtain rough estimates of the necessary ratios and then use these rough estimates
to compute a total least squares solution.

However, there are many obstacles before us if we wish to assume we can use the
methods of the previous paragraph to compute an approximately unbiased solution to the
flow estimation problem. In regions where different objects are observed, or even in regions
where different parts of the same object are observed and the texture properties differ greatly
in different subregions, it is implausible to assume homogeneity of error statistics. In order
to solve for the needed variances, we need to obtain a good estimate of the variance of
Ai u+ Bi v − Ci . We could use the estimate 1/(n− 2)

∑
i (Aj u+ Bj v − Cj )2, wheren is

the number of indicesj for which the flow is approximately equal to that at indexi . But
unlessn is large, this variance estimate can be noisy. If we assume the noise is Gaussian and
the flow is exactly constant, we can treat

∑
j ((

(Aj u+Bj v−Cj )
σ

)2) as having aχ2 distribution
with n− 2 degrees of freedom whereσ 2 is the actual variance of the noiseAj u+ Bj v − Cj .
But we do not knowσ 2 oru orv. The actual variance may differ from the variance estimated
from the limited set of data available. Using what we know aboutχ2 distributions, we see
that the standard deviation of 1/(n− 2)

∑
j (Aj u+ Bj v − Cj )2 is large unless the number

of equationsn is large.
There are still other sources of difficulty. We need substantial differences in flow between

different regions of the image in order to be able to solve for the unknown variances of
δAi , δBi , δCi . Otherwise, we cannot disentangle these different variances. But if there is a
substantial difference in flow, there may also be a substantial difference in the noise statistics
of the different regions, so it may be difficult to compute the variance ratios we need.

Other methods can be used to determine the variances we need in order to compute a
total least squares solution. But they also depend on questionable assumptions and noisy
estimates. For example, one might assume that the variances ofδA, δB, δC are proportional
to the variances ofA, B, C or proportional to some other easily obtained statistics of the
data.

2.3.1. Confidence limits.If we can somehow obtain reasonable estimates of the vari-
ances, it is not too difficult to obtain a rough estimate of the variance of the error of the total
least squares optical flow estimate. We have to apply a certain optimization condition in
order to compute the total least squares solution. This involves solving a certain nonlinear
equation. The nonlinear equation can be approximated by a linear equation. We know how
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to estimate the variance of the error of a linear equation that has a unique solution. Ifa= Kb
for a known matrixK , then if we know the statistics ofb, we know the statistics ofa. If we
know the variance–covariance matrix ofb, we know the variance–covariance matrix ofa.
What we need is a linear approximation to the nonlinear constraint that defines the total least
squares solution; then we can writeu = KC for some matrixK , and this approximation
must remain approximately correct (using the same matrixK ) even if a small amount of
noise is added to the dataE, C. Or for simplicity, we can just use the ordinary least squares
solution for the purpose of estimating the variance of the error in the flow estimate. The
total least squares solution and the ordinary least squares solution will be different. But the
variance estimate is rather crude anyway, and if the total least squares and ordinary least
squares solutions are very different, most probably neither one is trustworthy.

2.4. Robust Techniques

Many of the essentially linear methods for obtaining flow estimates suffer from similar
problems. In the form we have presented them so far, they are not very robust. A few outliers
can greatly affect the computed result. Several robust methods have been developed to
alleviate the problem [32]. It is difficult to analyze complex nonlinear methods. But a large
number of these methods are subject to the same biases and inaccuracies as linear methods.

We next analyze what happens when we try to robustify the classical way of obtaining the
value of (constant) flow using ordinary least squares. The ordinary least squares solution
can be rewritten in a way that is very illuminating. This analysis also applies to total least
squares. We just have to appropriately approximate the given total least squares problem
by an ordinary least squares problem as discussed in Section 2.3.

As mentioned above, the least squares solution is the pairu, v that minimizes
∑

i (Ai u+
Bi v − Ci )2; hence we require∑

i

Ai (Ai u+ Bi v − Ci ) = 0 (23)

and ∑
i

Bi (Ai u+ Bi v − Ci ) = 0. (24)

Thus ∑
i

(
A2

i u+ Ai Bi v − Ai Ci
) = 0 (25)

and ∑
i

(
Ai Bi u+ B2

i v − Bi Ci
) = 0. (26)

So assuming a unique solution exists, by Cramer’s rule,u = N
D is a ratio of two determinants.

N =
∑

i

Ai Ci

∑
i

B2
i −

∑
i

Ai Bi

∑
i

Bi Ci (27)

=
∑

i

∑
j

Ai Ci B
2
j − Ai Bi Bj Cj (28)
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while

D =
∑

i

∑
j

A2
i B2

j − Ai Bi Aj Bj . (29)

Both N andD can be rewritten in ways that are more illuminating:

N =
∑

i

∑
j

(Ai Bj )(Ci Bj − Cj Bi ) (30)

=
∑

i

∑
j>i

(Ai Bj − Aj Bi )(Ci Bj − Cj Bi ) (31)

=
∑

i

∑
j>i

(Ai Bj − Aj Bi )
2 Ci Bj − Cj Bi

Ai Bj − Aj Bi
(32)

and

D =
∑

i

∑
j>i

(Ai Bj − Aj Bi )(Ai Bj − Bi Aj ) (33)

=
∑

i

∑
j>i

(Ai Bj − Aj Bi )
2. (34)

But the solution to the pair of equations

Ai u+ Bi v − Ci = 0; Aj u+ Bj v − Cj = 0 (35)

is

u = Ci Bj − Cj Bi

Ai Bj − Aj Bi
; v = Ci Aj − Cj Ai

Ai Bj − Aj Bi
. (36)

Hence the least square solutionN
D can be reinterpreted as a weighted average. For any pair

of equations indexed byi 6= j , letting Di j = Ai Bj − Aj Bi and Ni j = Ci Aj − Cj Ai , we
can solve the pair of equations foru and obtain the solutionui j = Ni j /Di j provided the
denominator is nonzero. Sou is a weighted average of theui j ’s with weightsD2

i j .
We have only given the equation forui j but a very similar equation forvi j can be given.

The result established here also applies to weighted least squares (even if there are negative
weights): just replace the equationEi u = Ci bywi Ei = wi Ci wherewi is the square root
of the weight of thei th equation; if the weight is negative,wi will be imaginary.

Robust methods somehow combine the localui j ’s. One can think of many robust methods.
For example, one can compute the minimum-volume ellipse containing most of the weight
of the (ui j , vi j ). Or, instead of considering alli 6= j to solve foru, one can use some sample,
for example, by picking the pairs with largeD2

i j ’s.
It is difficult to provide a general analysis of the conditions for bias in robust methods.

We know that the least squares solutionu, which is a weighted average of the localui j ’s is
biased. Many robust methods can also be understood as averages of theui j ’s using different
weights. The point is that to choose the right weights, which would let us avoid the bias,
the statistics of the noise have to be known. Thus by the same argument that the noise
parameters often cannot be estimated well, robust methods like the ones discussed above
are biased.
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2.5. Nonconstant Flow

Reference has already been made to the possibility that the flow is not constant. It was
assumed that the flow is locally constant, but even that is not plausible. It is more likely that
the flow is a simple function of position, perhaps approximately linear or approximately
quadratic. If depth is constant, flow is an approximately quadratic function of position. More
generally, the flowu can be decomposed into a linear combination of basis flowswi where
eachwi is a known function of position andu =∑i ui wi for some unknown coefficients
ui . We can still use the fact thatDI

Dt = 0 to obtain a linear equation
∑

j E ji u j − Ci = 0 for
the unknownu j . We still have the possibility of applying a local smoothing operator before
employing the principles that corresponding points have the same attribute value. We can
still take Fourier transforms. We still have the same problems with bias in the ordinary least
squares solution, and we can still obtain a rough estimate of variance using this solution.

A problem with this discussion is that if the flow is not constant, the result of applying a
smoothing operator toAi u is not the same asu times the result of applying the smoothing
operator toAi . But if the basis vectorsw j are known, we can compute in advance, for any
vectorz j of coefficients, the effect of applying the smoothing operator tow j · z j .

In our framework, we cannot easily handle sharp discontinuities in the flow field if the
locations of these discontinuities are not known. But we can model more than simple linear
decomposition of the flow.

One possibility is to define plausible a priori models of how equation error varies with
the index of an equation. If the indicesi represent points where flow is observed, and we
wish to obtain the value of the flow in the vicinity of some pointp, it is plausible that the
further a pointp1 is from p, the less likely it is thatp and p1 have the same flow. Thus
instead of computing a least squares solution toAi u+ Bi v − Ci = 0, we should compute
the solution toki (Ai u+ Bi v − Ci ) = 0 whereki is a weight dependent on the distance
betweenp and the pointp1 that is indexed byi . This procedure will, in effect, give us a
variety of smoothed flow values. Different weighting functions can be used for smoothing
over different size regions. We will still get consistent underestimates using the ordinary
least squares solutions under certain conditions. In order to get reasonably reliable flow
estimates, we will want the data from many different equations to substantially influence
the computed solution, but that will produce a tendency forδEt E′ to be small compared to
Et ′E′ and thus give us underestimates.

Other linear methods can be treated within our framework. It might be better to more
explicitly model the random point-to-point variations in flow. Then the equationAi u+
Bi v − Ci = 0 fails to be exactly true not only because of noise in the dataAi , Bi , Ci but also
because of “noise” in theu, v. That means that the flowu consists of a constant regional flow
ur to which is added noiseun which is zero-mean. This noise is assumed to be independent
of the noise in theAi , Bi , Ci and it is also assumed that theun’s of distinct points are
independent and identically distributed. The amount of variance inAi u+ Bi v − Ci due to
random point-to-point variations in flow isA′2i σ

2
2 + B′2i σ

2
2 (v). Hereσ 2

2 (u), σ 2
2 (v) represent

the variances of the point-to-point flow variations.
Assume for the sake of simplicity that there is no noise in theA or the B data. Then

under the assumption that the noise is Gaussian, since the weights should be inverse to the
variances, the maximum likelihood solution foru is the ordinary least squares solution of

σ 2
2 (Ci )

σ 2
2 (Ci )+ A2

i σ
2
2 (u)+ B2

i σ
2
2 (v)

(Ai u+ Bi v − Ci ) = 0. (37)
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In order to solve this, it is necessary to know the variance of the noise inCi and the magnitude
of the variance of the noise in the flow componentsu, v. Rough estimates of these quantities
can be made if there is a rough estimate of the value of the flow and hence a rough estimate
of how the size ofAi u+ Bi v − Ci varies as a function ofAi and Bi . A problem is the
noisiness of this method of inferring the size of the variances inu, v from the data. Even if
we have good estimates of the variances, we still have the same problem of bias as before
when we neglectδAi δBi 6= 0.

2.6. General Remarks on Gradient and Frequency-space Methods

We have seen how difficult it is to estimate the noise parameters using the limited infor-
mation available to us. This is true for several possible models of the noise. The result is
inevitable bias.

If we had a larg amount of data for which the noise parameters were fixed, it would be
easy to closely approximate the noise parameters. But the noise parameters do not stay
fixed long enough. Sensor characteristics may stay fixed, but there are many other sources
of noise besides sensor noise. Different lighting conditions, different physical properties of
the objects being viewed, and different orientations of the viewer in 3D space all result in
different amounts of noise. Aside from all these factors, in order to estimate derivatives or
to compute Fourier transforms, we need to interpolate. The accuracy of interpolation can
depend in complex ways on the pattern of intensities in the image.

3. CORRELATION METHODS

We next discuss a model for correlation methods which also gives bias. Classical correla-
tion methods find theu that maximizes the correlation betweenI (p, t) andI (p+ u, t + 1)
where this correlation is computed over a large fragment of the image. The pointp is an
arbitrary point in 2D image space andt represents time. If there is constant flow equal tou
and corresponding points have the same intensity, then this correlation should be perfect.

To simplify matters, we assume that the measure of correlation is additive, so that the
correlation is just

∑
p,t g(I (p, t), I (p+ u, t + 1)) for some functiong. For example, the

correlation might be measured by the covariance if we could safely ignore the fact that
the errors in the estimates of the value ofI at nearby points are not independent. This
assumption is comparable to the assumption in gradient-based methods that the errors in
(5) at differenti ’s are independent. For simplicity we will assume that g is a quadratic
function.

Nothing changes very much if instead of assuming that corresponding points have the
sameI , we allow for slowly changingI and requiring thatI at timet + 1 be a linear function
of I at time t . Then we also have to pick appropriate coefficients for the linear function
and compare the actualI at a pointQ corresponding to pointP with the predicatedI . The
prediction is based on a linear predictor with unknown coefficients. We can solve for the
unknown coefficients using least squares.

There are rather annoying artifacts due to gridding. If in computing the correlation we
only sum over (p, t) on the grid, the correlation would be affected by how near the points
(p+ u, t + 1) are to points on the grid. This is because in order to compute the values ofI
at points off the grid we need to interpolate. The interpolation entails a kind of smoothing
that cleans up some of the noise and hence increases the correlation; we need to do some
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smoothing to evaluateI at points half-way between two grid points, but much less smoothing
to evaluateI near the grid points. In general, interpolation involves different amounts of
noise-smoothing at different points, but we ignore this issue. We assume either that we are
only working with points on a grid or that we have designed an interpolation scheme and a
correlation measure that do not suffer from anomalies due to gridding, we deliberately add
random noise to the interpolated intensity values to counteract the problem, or we compute
correlations using only points on the grid (and if we want to obtain subpixel accuracy
estimates of flow, we interpolate the correlations).

We analyze the bias only in the case of constant flow. The same kind of analysis could
be applied more generally, and roughly the same result would be obtained, but the notation
would have to be more complex. We will also not explicitly handle the case where what
must match at corresponding points is notI , but some linear function ofI .

The essence of our claim is that if the noise values at different points are correlated so
that the closer two points are in space-time the greater the correlation, then there will be a
bias toward underestimation. The same bias will arise if we assume that the observedI is
obtained by smoothing the actual values ofI in some space-time neighborhood and then
adding noise.

Let u′ be the actual flow, and let the time interval between the images be one unit. To
simplify the analysis we consider only one space dimension.

We assume that the observedI is equal to the actualI ′ plusδ I , a noise term. Theδ I ’s at
different points are not uncorrelated. We define a Euclidean distance metric in space-time
and assume that the smaller the distance between two points, the greater the correlation of
theδ I ’s found at the two points. Then if corresponding points have the same intensity, the
difference between the intensity observed at (x + u+ δC, 1) and the intensity observed at
(x, 0) is the sum of two terms. One term is the difference between the actualI ′(x, 0) and
I ′(x + δx, 0) (note thatI ′(x + δx + u, 1)= I ′(x + δx, 0). The other term is the difference
between theδ I at (x + u+ δx, 1) and theδ I at (x, 0). Assuming that the noise is independent
of the actualI ′,∑

(I (x + u+ δx, 1)− I (x, 0))2

=
∑

(I ′(x, 0)− I ′(x + δC, 0))2+
∑

(δ I (x + u+ δx, 1)− δ I (x, 0))2+ φ. (38)

Here φ = 2
∑

(I ′(x, 0)− I ′(x + δx, 0))(δ I (x + u+ δx, 1)− δ I (x, 0))) and has exp-
ected value zero. Thus it can be ignored when analyzing bias, because the noise is in-
dependent of the actualI ′, andφ is the summation of many terms which will tend to cancel
each other out so thatφ will tend to be small compared to the other two terms. If we compute
the correlation over a large enough region so that boundary effects can be ignored, and we
pick a values, the first term on the right-hand side of the above equation will be the same if
we change the value ofδx from s> 0 to−s, but the second term will be smaller because
of the correlation pattern of the noise. This will result in bias. A preference foru− s over
u+ s will arise.

If there are many sharp gradients inI ′ in thex-direction, the first term will be fairly large
unlessδx is small, so the bias will be less significant.

The above was only a 1D motion analysis. But the only additional complexity in the 2D
case is the notation; there will still be the same kind of bias. A slight generalization of the
argument shows that in the 2D case, if there is bias, it is smaller in the direction in which
there is more data; the result is a bias in the orientation of the flow.
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3.1. The Effect of Smoothing

What if our model of noise does not apply and the local estimates are noisy but unbiased?
Even so, local correlation estimates of flow are likely to have a lot of error, and they need to
be smoothed to give sensible results. In fact, the most frequently used correlation methods
(such as those discussed in [3, 35]) compute this correlation over small areas of support and
then apply smoothing to obtain the optical flow. These methods, because of the smoothing,
will be biased.

The simplest kind of smoothing assumes constant flow and uses least squares to smooth
the local estimates; indeed, it computes a weighted average. More sophisticated smoothers
perform a kind of regularization and suffer from the biases discussed in Section 2.5; they
still do not avoid bias.

4. AN EXPLANATION OF OPTICAL ILLUSIONS

4.1. The Model

We use a gradient-based method; simple least squares estimation; and additive, identi-
cally, independently distributed, symmetric noise. This is the model studied in Section 2.2.1;
an asymptotic proof of the bias was given there.

To have a notation for the estimated flow which allows us to give a detailed explanation
and which also shows the bias for a smaller number of measurements, we develop the least
squares solution in a Taylor expansion.

In (5), let the variablesA, B, C be the spatial and temporal derivatives of the image
intensity function. Then this equation is the optical constraint equation. The estimated
values (Ai , Bi , Ci ) consist of the actual values (A′i , B′i , C′i ) and the additive noise (δAi , δBi ,
δCi ). The expected values of the first-order terms are zero and the expected values of the
second-order terms are given by the covariance matrix

E((EC)t (EC)) =


σ 2

s

σ 2
s

σ 2
t

.
The expected values of higher order terms are assumed to be negligible.

In Appendix C the expected value of the estimated flow (18) is developed in a second-
order Taylor expansion at zero noise; it converges in probability to

plim
n→∞

E(u) = u′ − nσ 2
s M ′−1u′, (39)

where M ′ = E′t E′, the matrix of exact spatial gradient values, andn is the number of
measurements. Formula (39) is well known [33] and could also be derived from (15).

This formulation allows for easy interpretation of the effects of the gradient distribution
on the bias of the computed flow, as all the information is encoded in the matrixM ′. In
the case of a uniform distribution of the image gradients in the region where the flow is
computed,M ′ (and thereforeM ′−1) are multiples of the identity matrix, leading to a bias
solely in the length of the computed optical flow; there is an underestimation. In a region
where there is a unique gradient vector,M ′ will be of rank 1; this is the aperture problem. In
the general case the bias can be understood by analyzing the eigenvectors ofM ′. As M ′ is a
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real symmetric matrix, its two eigenvectors are orthogonal to each other.M ′−1 has the same
eigenvectors asM ′ and inverse eigenvalues. The direction of the eigenvector corresponding
to the larger eigenvalue ofM ′−1 is dominated by the normal to the major orientation of the
image gradients, and the product ofM ′−1 with vectoru′ is most strongly influenced by this
orientation. Thus there is more underestimation in the direction of fewer measurements and
less underestimation in the direction of more measurements. The estimated flow therefore
is biased downward in size and biased toward the major direction of the gradients (that is,
toward the eigenvector corresponding to the larger eigenvalue ofM ′).

4.2. Dissection

Figure 2 displays the expected values of the noise terms for the gradient distribution that
occurs in one of the regions of the Ouchi illusion shown in Fig. 1 with blocks four times
longer than they are wide. The image gradients are in two orthogonal directions with four
times as many measurements in one direction as in the other. The plots show the change in
the bias as the angle between the gradients and the true flow direction varies. The angleθ is
measured between the positivex-axis and the direction of more gradients; the other gradient
direction is at an angleθ + π/2 with the positivex-axis (see Fig. 2a). Figures 2b and 2c
show the expected errors in length and angle. The plots are based on the exact second-order
Taylor expansion given in Appendix C.

For such a gradient distribution the bias can be understood rather easily. The eigenvectors
of M ′−1 are in the directions of the two gradient measurements with the larger eigenvalue

FIG. 2. (a) Sixteen measurements are in the direction making angleθ with the positivex-axis and four
measurements are in the directionθ + π/2. The optical flow is along the positivey-axis and of length 1. (b)
Expected error in length. (c) Expected error in angle measured in radians between the expected flow and the actual
flow. The error hasσs = 0.15.
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corresponding to fewer gradients. Asu′ = (0, 1), the noise term in (39) leads to a bias in
length as shown by the curve in Fig. 2b, which has its minimum at 0 and its maximum at
π/2 (that is, whenu′ is aligned with the major gradient direction). The error in angle is
greatest forπ/4 (that is, whenu′ is exactly between the two eigenvectors ofM ′−1) and it
is 0 for 0 andπ/2 (Fig. 2c). Overall, this means the bias is largest when the major gradient
direction is normal to the flow and is nearly eliminated when it is aligned with the flow (that
is, in the Ouchi pattern, when the long edge of the block is perpendicular to the motion).
The bias for anglesθ betweenπ/2 andπ is obtained from the above plots by reflecting the
curves inπ/2 and changing the sign of the error in the angle.

Let us now use these graphs to discuss the Ouchi illusion. In the Ouchi pattern, the relative
angles between the real motion and the predominant gradient direction differ in the inset
and the surround, so the regional velocity estimates are biased in different ways. When,
instead of freely viewing the pattern of Fig. 1, the page is moved in different directions, we
observe that the illusory motion of the inset is mostly a sliding motion orthogonal to the
longer edges of the rectangle and in the direction whose angle with the motion of the paper
is less than 90◦. Using Fig. 2, it can be verified that for all angles the difference between
the error vector in the inset and the error vector in the surrounding area (or, equally, the
estimated flow vectors) projected on the dominant gradient direction of the inset is in this
direction. For example, when the motion is along the first meridian (to the right and up), the
error in the inset is found in the graph at angleθ = π/4 and in the surround atθ = 3π/4.
The two error vectors are of the same length, each toward the gradients of the longer edges,
and the projection of the resulting difference vector is to the right. If the motion of the paper
is to the right, the difference in error vectors is due to length, resulting in a perceived motion
to the right. If the motion of the paper is upward, the difference vector is downward; its
projection on the major gradient direction of the inset is zero and thus hardly any illusory
motion is perceived. Figure 3 shows, for a set of true motions, the biases in the perceived
motion.

We assume that in addition to computing flow, the visual system also performs segmen-
tation, which is why a clear relative motion of the inset is seen. When experiencing the
Ouchi illusion under free viewing conditions, the triggering motion is due to eye move-
ments, which can be approximated through random, fronto-parallel translations. Since the
difference in the bias vectors of the inset and surround has a significant projection on the
dominant gradient direction of the inset for a large range of angles (that is, directions of eye
movements), the illusion is easily experienced.

The Ouchi pattern is an ideal setting for demonstrating the bias. First, the gradient distri-
bution in the pattern is such that the bias is highly pronounced. Second, the 3D motion of the
observer relative to the pattern (which is either due to random eye movement or the jiggling
motion of the paper) changes rapidly. This makes temporal integration of measurements
very difficult, and thus the system cannot acquire enough data to learn the noise parameters.

In [13] it has been proposed that the bias in flow estimation due to errors in the spatial and
temporal image derivatives also accounts for the findings of some studies using variations
of the original Ouchi patterns and for a number of studies on the perception of moving
plaids, in particular studies which reported a misperception in the estimated velocity of the
plaid.

The erroneous estimation of image velocity in plaids has been given another explanation
based on Bayesian modeling [46]. This explanation is based on the assumption that there
is an a priori preference for small flow values. It is easily understood that this preference
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FIG. 3. The regional motion error vector field. The vectors shown are the differences between the true motion
and the calculated motion. To derive the sliding motion, compute the difference between the error in the inset and
the error in the surround, and project the resulting vector on the dominant gradient direction in the inset. The line
from the center is the direction of the true motion. The noise is Gaussian and the spatial gradient magnitude is 1.
In (a) and (b),σs = σt = 0.1; in (c),σs = σt = 0.2.

results in an increase in the a posteriori probability of small flow values and thus in a bias
toward underestimation. Thus, in the Bayesian model the bias is in effect assumed, whereas
in our model it is not.2 It is true that most quantities in nature are more often small than large.
Spatial derivatives of intensity, temporal derivatives of intensity, curvature, and many other
visual quantities tend to be small more often than they are large. This is the basic justification
of the smoothness assumptions that we often use. But why should a system prefer to estimate
small flow values? Even if large flow values are rare, it is especially important to quickly
detect them when they occur. This leads us to doubt that a Bayesian model which ignores
the utility of flow information properly reflects the biological visual system.

5. COMPUTATIONAL MODELS OF MOTION PROCESSING

The current view which dominates modeling in both computer vision and biological vision
is that the computation of optical flow is accomplished prior to any other computations
involving image motion. First the optical flow is computed on the basis of 2D image
information only; then it is used to compute 3D space and time interpretations, such as
3D motion estimation, segmentation, and shape estimation.

2 Non-Bayesian methods also implicitly assume priors. Least-squares methods assume that a priori all solutions
have equal probability.
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We have seen, however, that estimation of optical flow entails computational problems.
The estimation of optical flow requires that the data from each image region be aggregated,
and this makes it inseparable from the detection of discontinuities (which are due to objects
at different depths or differently moving scene elements). Without knowing the locations
of discontinuities, it is hard to estimate flow there, but in order to detect the discontinuities,
information about optical flow within their neighborhoods is needed. Noise in the estimates
makes the problem even more difficult. As shown in the preceding analysis, for statistical
reasons it is very difficult to obtain accurate optical flow estimates even within areas of
smoothly changing flow. Theoretically, to achieve good flow estimates, very accurate esti-
mates of the noise parameters are needed; but in order to estimate the noise well, motion
information from large neighborhoods has to be integrated, and this requires detailed mod-
els of the flow field. The only way to obtain such models is from additional information
about the dynamic scene; this includes knowledge about the discontinuities, the shapes of
the visible surfaces, and the 3D motion.

This suggests that instead of following a two-step approach, which separates optical
flow estimation from scene interpretation, new models should be developed that combine
these processes. To obtain such models we might use a priori 3D constraints to improve
our estimates of the 2D flow. These might be constraints on surface shape or 3D motion
parameters. For example, we might seek the 2D flow that is consistent with the motion being
rigid in some region and that minimizes some measure of curvature or some function of the
derivatives of depth [5]. Or we might obtain useful a posteriori information about the depths
or 3D motions of the objects in the scene using cues other than flow. Direct translation of
these 3D constraints into constraints on the flow (or its derivatives) might be easy. If not,
we could work explicitly with the 3D information.

Any such computational model has to consider the information exchange between the
different processes. For example, we can envision an architecture which carries out the
computations in a feedback loop. First, we estimate the image velocity by combining nor-
mal flow measurements. These estimates do not necessarily have to be quantitative, but
could take the form of qualitative descriptions of local flow field patches or bounds on
flow values. The flow computed in this way is used to obtain partial depth estimates and
perform discontinuity detection; at the same time, an estimate of 3D motion can be derived.
The computed 3D information can then be fed back and utilized together with the image
measurements to obtain better flow estimation, discontinuity localization, and improved 3D
motion and structure estimation.

However, even when we use the best computations, we cannot guarantee that optical
flow will be estimated accurately all the time, and this has to be taken into account in
visual navigation. Most computational models assume generically computed flow which
is used for obtaining accurate 3D motion and for metric shape estimation. Consideration
of the computational difficulties of this approach calls for a more purposive approach.
Depending on the particular computation of 3D information, different representations of
flow may be useful. For example, instead of attempting accurate egomotion estimation
from optical flow, the approximate directions of translation and rotation can easily be ob-
tained from patterns of the sign of the normal flow [10]. Instead of reconstructing the
scene in view, it is computationally more feasible to derive less powerful shape represen-
tations sufficient for particular tasks, for example representations which only describe the
qualitative shapes of scene patches, or we can obtain an ordering of surface patches with
respect to their depth values [11, 12]. Also, instead of attempting segmentation directly
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from image measurements, segmentation may be performed only in conjunction with other
tasks.

6. CONCLUSIONS

This paper has analyzed the statistics of optical flow estimation. Noise in the data poses
serious problems for the estimation of flow. The reason is that noise affects both the spatial
and temporal components of the image measurements (that is, both the direction and the
length of one-dimensional velocity measurements). To estimate flow well, the noise pa-
rameters need to be estimated accurately. In many situations this is impossible because the
parameters are not static, but change with the viewing and lighting conditions, often too
rapidly to collect enough data to obtain good estimates.

An unfortunate consequence of the unknowability of the noise parameters is bias in
the flow estimates. Many flow estimation techniques have been analyzed here, including
gradient-based, energy-based, and correlation methods. It was found that most techniques
produce consistent bias; the estimates tend to be smaller in length and closer in direction
to the dominant gradient direction in the patch than the actual values. A bias of this form
also provides an explanation for the illusory motion perceived by humans when viewing
the Ouchi pattern and for erroneous estimates in the perception of plaid motions.

Although it has long been known that the estimation of optical flow is a very difficult
problem (and if formulated in the classic way, an ill-posed one), this paper for the first
time points out one of its inherent computational problems. The point of our study has
been to argue for a reevaluation of the role of flow estimation in 3D motion processing.
Optical flow estimation should not be carried out in isolation but in conjunction with the
higher-level processes of 3D motion and scene interpretation. This way of looking at the
“motion pathway” [48] might stimulate new research on structure from motion.

APPENDIX A

Conservation of Phase

Assuming constant local phase, letG1I , G2I represent the real and complex parts of
some local Fourier transform. Define the ratioG1I /G2I component-wise so that

G1I

G2I
(ωx, ωy, ωt , x, y, t) ≡ G1I (ωx, ωy, ωt , x, y, t)

G2I (ωx, ωy, ωt , x, y, t)
.

It is not assumed thatDI
Dt = 0 but rather that

D G1 I
G2 I

Dt
= 0. (A.1)

Using the usual rule for differentiation of a quotient, we obtain

G2I DG1 I
Dt − G1I DG2 I

Dt

(G2I )2
= 0, (A.2)

Where (G2I )2 is a product that is defined component-wise.
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Expressions such asDG j I /(Dt) can be rewritten in terms of partial derivatives:

DG j I

Dt
= ∂G j I

∂x
u+ ∂G j I

∂y
v + ∂G j I

∂t
.

Hence (A.2) can be rewritten in the form given by (5).
The only remaining problem is the noise analysis of (A.2). We apply (A.2) to one particular

sextuplet of independent variables (ωx,ωy,ωt , x, y, t) and analyze the noise there. Assume
that G1I , G2I are known with reasonable accuracy, but that the derivatives are hard to
estimate. The derivatives of bothG1I and G2I are noisy. Let the variance in the noise
of DG j I /(Dt) beσ 2

G j
. Let us also assume that theDG1I /Dt noise and theDG2I /(Dt)

noise are not correlated with each other. Then the variance in the left-hand side of (A.2)
is (σ 2

G1
/(G2I )2)+ ((G1I )2σ 2

G2
/(G2I )4). As a crude approximation, one might say that the

variance in the left-hand side of (A.2) is inversely proportional to the square of the amplitude
(i.e., directly proportional to ((G1I )2+ (G2I )2)−1). (Assumeσ 2

G1
= σ 2

G2
. Then the noise is

directly proportional to a quotient whose denominator is (G2I )4 and whose numerator is
just the squared amplitude of theG-transform.)

One might apply (A.2) to estimate the flow in the vicinity of some point (x0, y0, t0). In
that case we fix the spatial parameters so thatx = x0, y = y0, t = t0 butωx, ωy, ωt can vary
through all possible frequencies. It makes sense to assume that the errors in the observation
of DG j I /Dt at the different frequencies are independent. It also makes sense to assume that
σ 2

G1
, σ 2

G2
is independent of frequency. So in computing the weighted least squares solution

to (5), the weights need to be inversely proportional to the variances [24] and thus directly
proportional to the squared amplitude.

APPENDIX B

Bias if the Noise is Gaussian

Here we present a nonasymptotic argument for the statement that ordinary least squares
estimates tend to be underestimates. We assume that the different noisesδAi , δBi , δCi

are independent and identically distributed. We also need to assume that the probability
distribution of the noise given the known data is Gaussian.

First consider the one-dimensional case, so that all theBi = 0. To simplify matters further,
assume thatδCi = 0 for all i andAi = 1 for all i . Then the estimated value ofu is just the
ordinary average:

u =
∑

i Ci∑
i 1
. (B.1)

If the actual value of flow in thex-direction isu′, then

A′i =
Ci

u′
, (B.2)

so that

A′i − Ai = Ci − u′

u′
. (B.3)
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We want to say something about the probability that the actual flow in thex-direction
has some valueu′ given thatA andC have the values they do. It will be convenient to
argue not directly in terms of probability, but instead in terms of an energy function. IfPr
is the probability of some event, then by definition the energyT is given by the relation
Pr= k1e−k2T wherek1, k2 are constants of no interest to us.

We know that the energy can be written as

∑
i

(
Ci − u′

u′

)2)
(B.4)

=
∑

i

(Ci − u)2+ (u− u′)2+ 2(u− u′)(Ci − u)

(u′)2
. (B.5)

But
∑

i (Ci − u) = 0 by definition of the average. So the energy function considered as
a function ofu′ is a monotonically increasing function of ((T + (u− u′)2)/((u′)2)) where
T = 1

n

∑
i (Ci − u)2 andT does not depend onu′. Heren is the number of indicesi over

which we are summing. So if coordinates are chosen such thatu > 0, then fors> 0, the
energy function is less ifu′ = u+ s than if u′ = u− s, and thus it is more likely that
u′ − u = s than thatu′ − u = −s. In other words, the estimate is more likely to be too
small than too large.

The same argument works if we remove the constraint thatAi = 1. In this case the energy
function is∑

i

(
Ci − Ai u′

u′

)2

=
∑

i

(
(Ci − Ai u)2+ (Ai u− Ai u′)2+ 2Ai (u− u′)(Ci − Ai u)

(u′)2

)
.

(B.6)

By definition of the least squares solution,
∑

i Ai Ci =
∑

i Ai Ai u. The energy function is
now a monotonically increasing function of ((T + τ 2(u− u′)2)/((u′)2)) whereT andτ are
expressions that do not depend onu′, and we can draw the same conclusion as before.

Now consider the problem in two dimensions. Choose coordinates so thatv = 0, and
assume thatδC = δB = 0. Then we must have

u′ = Ci − Bi v
′

A′i
(B.7)

and

A′i =
Ci − Bi v

′

u′
. (B.8)

Thus the energy function is

∑
i

(
Ci − Bi v

′ − Ai u′

u′

)2

=
∑

i

(Ci − Bi v
′ − Ai u)2+ A2

i (u− u′)2+ 2Ai (u− u′)(Ci − Bi v
′ − Ai u)

(u′)2
(B.9)

Taking into account the fact that
∑

i Ai Ci =
∑

i A2
i u, we can see that the energy function

can be written in the form (T + τ 2s2+ Qv′s)/((u′)2) wheres= u− u′ andT , τ , Q are
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not dependent onu′, v′. So let us fix the value of|s| and the value of|v′| and again choose
coordinates so thatu > 0 and take advantage of the fact that the expression for the energy
is simple.

The energy function is a fraction. There are two possible values for the numerator:
T + τ 2s2+ |Qv′s| and T + τ 2s2− |Qv′s|. Let us call these two valuesq1 > q2. There
are also two possibilities for the denominator—call themr1 > r2 ≥ 0. If s< 0, the energy
can beq1/r1 or q2/r1. If we replace the denominatorr1 by r2, we obtain the possibilities
that arise whens> 0, but if we replace the denominatorr1 by r2, we increase the energy;
therefore, it is less probable thats is positive than that it is negative. This argument assumed
the values of|s|, |v′| to be fixed, but it does not matter what they are equal to. Hence more
likely than nots is negative and we have an underestimate.

Let us generalize still further by allowingδBi 6= 0. Then we can let theδBi be arbitrary.
We have

A′i =
Ci − B′i v

′

u′
. (B.10)

Thus the energy function is

∑
i

ν(δBi )
2+

(
Ci − B′i v

′ − Ai u′

u′

)2

=
∑

i

ν(δBi )
2

+
∑

i

(Ci − B′i v
′ − Ai u)2+ A2

i (u− u′)2+ 2Ai (u− u′)(Ci − B′i v
′ − Ai u)

(u′)2
. (B.11)

Hereν is a weight that depends on the variance of the noise in they-direction. Choose three
quantities,k1, k2, andK3. The first two quantities are scalars and we require|s| = |k1|while
|v′| = |k2|. Here, as before,s= u′ − u. K3 is a vector and we require that eitherδB = K3

or δB = −K3. An argument similar to that given in the next to last paragraph shows that it
is less likely thats> 0 than thats< 0, and this argument depends in no essential way on
the particular valuesk1, k2, K3 chosen.

The final generalization allows there to be noise in theCi . We have

A′i =
C′i − B′i v

′

u′
. (B.12)

Thus the energy function is

∑
i

ν1(δBi )
2+ ν2(δCi )

2+
(

C′i − B′i v
′ − Ai u′

u′

)2

=
∑

i

ν1(δBi )
2+

∑
i

ν2(δCi )
2

+
∑

i

(C′i − B′i v
′ − Ai u)2+ A2

i (u− u′)2+ 2Ai (u− u′)(C′i − B′i v
′ − Ai u)

(u′)2
. (B.13)

Hereν1, ν2 are weights. Again use the fact that
∑

i Ai Ci =
∑

i A2
i u. We see that the energy

function can be written in the form

R+ T + τ 2s2+ Qv′s+ (∑i Ai δCi
)
s

(u′)2
. (B.14)
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HereR, T, τ, Q do not depend onu′, v′. Again an argument that temporarily fixes the values
of certain quantities can be used. Namely, we need to fix the values of|s|, |v′|, and find
noise vectorsK3, K4 and require that eitherδB = K3 or δB = −K3, and similarly either
δC = K4 or δC = −K4. Again, we can show that underestimation is more probable than
overestimation.

APPENDIX C

Expected Value of the Least Squares Flow Solution

The expected valueE(u) of the least squares solution is given by

E(u) = E((Et E)−1(EtC)).

As the noise is considered independent and zero-mean, all the first order terms and the
second order terms in the temporal noise vanish, and thus the expansion at point noise
N = 0 (i.e.,δAi = δBi = δCi = 0) can be written as

E(u) = u′ +
∑

i

(
∂2u
∂δA2

i

⌋
N=0

E
(
δA2

i

)
2

+ ∂2u
∂δB2

i

⌋
N=0

E
(
δB2

i

)
2

)
.

For notational simplicity, we define

M = Et E and b = EtC

M ′ = E′t E′ b′ = E′tC′.

Using the fact that for an arbitrary matrixQ

−∂Q−1

∂x
= Q−1∂Q

∂x
Q−1

We find the first order and second order derivatives to be

∂u
∂δAi

= −M−1

[
2Ai Bi

Bi 0

]
M−1b+ M−1

[
Ci

0

]
∂2u
∂δA2

i

= 2M−1

[
2Ai Bi

Bi 0

]
M−1

[
2Ai Bi

Bi 0

]
M−1b

−M−1

[
2 0
0 0

]
M−1b− 2M−1

[
2Ai Bi

Bi 0

]
M−1

[
Ci

0

]

and similarly, we have symmetric expressions for

∂u
∂δBi

and
∂2u
∂δB2

i

.
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Since we assumeE(δA2
i ) = E(δB2

i ), the expansion can thus be simplified to

E(u) = u′ − nM′−1u′σ 2
s

+
∑

i

{
M ′−1

([
2A′i B′i
B′i 0

]
M ′−1

[
2A′i B′i
B′i 0

]
+
[

0 A′i
A′i 2B′i

]
M ′−1

[
0 A′i
A′i 2B′i

])
u

−M ′−1

([
2A′i B′i
B′i 0

]
M ′−1

[
C′i
0

]
+
[

0 A′i
A′i 2B′i

]
M ′−1

[
0

C′i

])}
σ 2

s ,

where we have underlined the term that diminishes proportionally to1
n (wheren is the

number of measurements being combined in a region). The sum of thesen terms will give
a consistent, statistically constant response. The rest of the terms diminish proportionally
to 1/n2. Informal experiments show that the sum of these terms becomes negligible for
n > 5, a number clearly smaller than the number of terms likely to be combined in any real
system.
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