Project 2 (one more time - without no match)

• The dynamic programming algorithm needs the following definitions:
 \(I_L \) is the left row; \(I_R \) the right row, with \(n \) pixels per row.
 \[
 SAD(x, x') = \sum_{x' - r}^{x' + r} \sum_{j = -r}^{j = r} |I_L(x) - I_R(x')|
 \]
 If we let \(k \) be the radius of the search interval we will use around the input estimate of disparity, \(D_{in} \), then we can define the match score matrix, \(M \), as a \((2k+1) \times (n-2r)\) matrix with rows indexed from -\(k \) to \(k \):
 \[
 M(\text{offset}, \text{column})
 \]
 • maxint if \(D_{in}(\text{column}) + \text{offset} < 0 \)
 • \(SAD(\text{column}, D_{in}(\text{column}) + \text{offset}) \) otherwise
 • Define Conjugate(\text{offset}, \text{column}) = column + D_{in}(\text{column}) + \text{offset}

Last time around

• A disparity map, \(D \), is a mapping from \((r, n-r)\) - pixel positions - to \((0, \text{maxdis}+1)\) - disparities. \(D \) must satisfy
 - \(j < j' \) implies \(j + D(j) \leq j' + D(j') \)
• The Cost of a disparity map is defined as
 \[
 Cost(D) = \sum_{x \leq y} M(D(x) - D_{in}(x), y)
 \]
• Goal is to find the disparity map, \(D^* \), that has minimal cost
Home stretch

• Define \(\text{Best}(\text{offset}, \text{col}) \) to be the cost of the minimal cost disparity map for the first \(\text{col} \) columns of \(I_L \) constrained to assign disparity \(\text{D}_{\text{in}}(\text{col}) + \text{offset} \) to \(\text{col} \).

• The cost of the best disparity map will then be:

\[
\min_{-k \leq \text{offset} \leq k} \text{Best}(\text{offset}, n - r)
\]

The finish

• Now we need a recursive definition of \(\text{Best} \), and we are done.

\[
\begin{align*}
\text{Best}(\text{offset}, r) &= M(\text{offset}, r) \\
\text{Best}(\text{offset}, \text{col}) &= M(\text{offset}, \text{col}) + \\
\min_{\text{offset} \leq \text{offset} \leq \text{offset}_\text{conjugate}(\text{offset}, \text{col} - 1)} \{\text{Best}(\text{offset}', \text{col} - 1)\}
\end{align*}
\]
The Delivery

- Automatic grading of the dynamic programming algorithm:
 - Given: Match matrix
 - Output: Best disparity map and its score
 - Due: May 17
 - Value: 35%

- Report
 - Describe implementation
 - Compare output disparity map to ground truth
 - Extra credit - implement no-match algorithm
 - Due: May 21 - no late submissions
 - Value: 65% + 25%