Project 2 - Stereo

• Pyramid construction
• Multiresolution disparity estimation
 – gray level correlation
 – disparity estimation
 – disparity interpolation
 – disparity map expansion
• Visualization

Pyramid construction

• Given a stereo pair of 256x256 images
• Construct a 3 level pyramid containing images of size 256x256, 128x128, 64x64
Correlation at a given level

- Let D be an estimated disparity image computed from the previous stage of the multiresolution algorithm
 - at first stage, this image is not available, so can be regarded as uniformly 0.
- Correlation algorithm scans through entire left image (ignoring first and last rows and columns) and computes the correlation of the 3×3 neighborhood around $\text{Left}_{\text{level}}(i, j)$ with the 3×3 neighborhoods in an interval of points around $\text{Right}_{\text{level}}(i, j + D(i, j))$.

Level 0

- At level 0, the interval considered when matching $\text{Left}_{\text{level}}(i, j)$ to the right image are the neighborhoods centered around the pixels $\text{Right}_{\text{level}}(i, j)$ through $\text{Right}_{\text{level}}(i, j + \text{maxdis}/4)$
 - maxdis is the maximum disparity expected to occur in the original full resolution image.
 - Since we have a 3 level pyramid the disparity range at level 0 would be $[0, \text{maxdis}/4]$
Levels 1-2

• At levels 1 and 2, we have to match $\text{Left}_{\text{level}}(i,j)$ against an interval “centered” around $\text{Right}_{\text{level}}(i,j+\text{DIS}(i,j))$
 – DIS(i,j) might be slightly inaccurate
 – expansion of pyramid adds a few pixel uncertainty in disparity
 – In any event, do not allow negative disparities

Levels 1-2

• Example: For $\text{Left}_1 (10,20)$ our disparity estimate is 10 pixels
 – we “center” our search around the pixel $\text{Right}_1 (10,30)$, the predicted match
 – if we allow 3 pixel error in disparity estimate and compute the correlation scores with $[\text{Right}_1 (10,27), \text{Right}_1 (10,33)]$
 • So, all the correlation scores for a row in the left image can be stored in a 6xCOL matrix, where COL is the number of columns in the image at level i.
 • If any of the 6 entires would arise from a negative disparity, we replace the correlation with maxint.
A data structure

- Processing is done one row at a time.
- Goal: Choose a disparity for each column
 - includes a “no disparity” choice for possibly occluded points, with penalty score
 - disparities must satisfy ordering constraint:
 - \(j + \text{DIS}(j) < (j+1) + \text{DIS}(j+1) \)
 - total correlation score must be minimized

Disparity estimation

- Assign a disparity to each pixel in a row of the left image
 - enforce left-to-right ordering
 - allow for “no-match”
 - solve using dynamic programming
Dynamic programming - when recursion hurts

- Recursive algorithms can sometimes be VERY inefficient
- Fibonacci number

function fib(n)
begin
 if (n-0) or (n=1) then fib := 1
 else fib := fib(n-1) + fib(n-2)
end

Recursive Fibonacci

- For the recursive algorithm $T(n) = T(n-1) + T(n-2)$, which is the same recurrence relation as the sequence itself
 - so, $T(n)$ is exponential
 - F_6 is computed once, F_5 once, F_4 twice, F_3 3x, F_2 5x ...

```
F6
  F5
    F4
      F3
        F2
          F1

F4
  F3
    F2
      F1
```
Fibonacci

- If the compiler could maintain a table of previously computed Fibonacci numbers, then it could avoid the recursive calls for previously solved subproblems
- This would give us a linear algorithm
- Another time versus space trade-off
 - keep large tables of partial results that must be used over and over to solve a problem
 - only compute each partial result once - when it is first referenced.

A real example - matrix multiplication

- Suppose we have four matrices A (50x10), B(10x40), C(40x30) and D(30x5) and we want to compute ABCD. There are five ways to do this:
 1) A((BC)D) - requiring 16000 multiplication (12000 to compute the 10x30 matrix BC, 1500 more to compute the 10x5 matrix BCD and then 2500 more to compute ABCD)
 2) A(B(CD)) - 10,500
 3) (AB)(CD) - 36,000
 4) (((AB)C)D) - 87,500
 5) (A(BC))D - 34,500
Matrix multiplication

- So, there can be a BIG difference in the amount of work it takes to do the multiplication
- But the number of possible orderings grows quickly with n, the number of matrices
- Suppose last multiplication performed is
 - $A_1A_2\ldots A_i (A_{i+1} A_{i+2}\ldots A_n)$
 - There are $T(i)$ ways to compute $(A_1A_2\ldots A_i)$
 - There are $T(n-i)$ ways to compute $(A_{i+1} A_{i+2}\ldots A_n)$
 - There are $n-1$ places we could have cut the problem into two
- Solution is Catalan numbers, which grow exponentially

A dynamic programming solution

- Let c_i be the number of columns in matrix A_i
 - then A_i has c_{i-1} rows
 - A_0 has c_0 rows
 - required for the multiplication to be valid
- Let $m_{L,R}$ be the number of multiplications needed to multiple $A_L A_{L+1}\ldots A_{R-1} A_R$
 - $m_{L,L} = 0$
 - Suppose the LAST multiplication performed is
 - $(A_L A_{L+1}\ldots A_i)(A_{i+1}\ldots A_{R-1} A_R)$
 Then the number of multiplications performed is
 - $m_{L,i} + m_{i+1,R} + c_{L-1} c_i c_R$
A dynamic programming solution

- Define $M_{L,R}$ to be the number of multiplications required in an optimal ordering of matrices.

$$M_{L,R} = \min_{L \leq i \leq R} \{ M_{L,i} + M_{i+1,R} + c_{L-1}c_ic_R \}$$

- This expression translates directly into a recursive program
 - that would run forever
- But there are only a total of about $n^2/2$ possible values for the $M_{L,R}$ that EVER need to be computed
 - if $R-L = k$, then the only values needed in the computation of $M_{L,R}$ are $M_{x,y}$ with $y-x < k$

The program

$$A_1 = 3 \times 5, A_2 = 5 \times 8, A_3 = 8 \times 4, A_4 = 4 \times 3$$

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>220</td>
<td>160</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>96</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

for $L = 1$ to n

- $M_{L,L} = 0$;
- for $k = 1$ to $n-1$ {k is R-L}
 - for $L = 1$ to $n-k$
 - begin
 - $R = L + k$
 - $M_{L,R} = \text{maxint}$
 - for $i = L$ to $R-1$
 - $M' = M_{L,i} + M_{i+1,R} + c_{L-1}c_ic_R$
 - if $M' < M_{L,R}$ then $M_{L,R} = M'$
First due date

• April 22 - written description of dynamic programming solution you will use in your implementation
 – Must include the optimization formulae and a small hand drawn example showing how it will work.

Disparity map interpolation and expansion

• Double the size of the disparity map by assigning $D_{\text{level}}(i,j)$ to $D_{\text{level+1}}(2i,2j)$.
• Along each row of $D_{\text{level+1}}$ fill in blanks using linear interpolation