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Tracking a Dynamic Set of Feature Points 
Yi-Sheng Yao and Rama Chellappa, Fellow, IEEE 

Abstract-We address the problems of tracking a set of feature 
points over a long sequence of monocular images as well as how 
to include and track new feature points detected in successive 
frames. Due to the 3-D movement of the camera, different parts 
of the images exhibit different image motion. Tracking discrete 
features can therefore be decomposed into several independent 
and local problems. Accordingly, we propose a localized feature 
tracking algorithm. The trajectory of each feature point is de- 
scribed by a 2-D kinematic model. Then to track a feature point, 
an interframe motion estimation scheme is designed to obtain 
the estimates of interframe motion parameters. Subsequently, 
using the estimates of motion parameters, corresponding points 
are identified to subpixel accurasy. Afterwards, the temporal 
information is processed to facilitate the tracking scheme. Since 
different feature points are tracked independently, the algorithm 
is able to handle the image motion arising from general 3-D cam- 
era movements. On the other hand, in addition to tracking feature 
points detected at the beginning, an efficient way to dynamically 
include new points extracted in subsequent frames is devised so 
that the information in a sequence is preserved. Experimental 
results for several image sequences are also reported. 

I. INTRODUCTION 
GO-MOTION estimation has been an important topic in E image sequence analysis for more than a decade. Based 

on matches of a few discrete features such as points and lines 
over two or three frames, many algorithms for estimating 
the ego-motion of the camera and the structure of discrete 
features have been proposed. Although linear algorithms result 
when two or three frames are used, the high sensitivity of 
the estimates to input errors has been observed [l] ,  [lo]. 
Meanwhile, the robustness of approaches which use a sequence 
of images has attracted the attention of many researchers [ 151, 
[17]. The issue of finding feature correspondences over a long 
sequence of images needs to be addressed in such approaches. 

Existing techniques for tracking a set of discrete features 
over a sequence of images generally fall into two categories: 
two-frame based and long-sequence based. 

1) Two-frame-based approaches: In this category, finding 
feature correspondences over a sequence of images is 
broken into successive, yet independent problems of 
two-view matching. For example, in [14], Weng ef  al. 
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2) 

In 
that 

used multiple attributes of each image point such as 
intensity, edgeness, and comemess, which are invariant 
under rigid motion in the image plane along with a set 
of constraints to compute a dense displacement field and 
occlusion areas in two images. Cui et al. [SI then used 
an intensity-based cross-correlation method to refine 
the two-view matching results and obtain feature point 
correspondences over the sequence. In [19], Zheng and 
Chellappa first applied an image registration technique to 
compensate for the motion of the camera between two 
consecutive frames. The feature point correspondence 
problem is then solved by repeatedly identifying the 
corresponding points to subpixel accuracy using the 
correlation matching method. 
Long-sequence-based approaches: In this category, 
smoothness constraints are employed to exploit the 
temporal information existing in the sequence. For 
example, assuming that the motion of an object does 
not change abruptly, Sethi and Jain [13] formulated the 
correspondence problem as an optimization problem. 
The trajectories of a set of feature points are obtained 
by searching for a set of trajectories each of which 
has maximal smoothness. Blostein and Huang [3] used 
multistage hypothesis testing (MHT) to detect small, 
moving objects in each image; a feature trajectory is 
determined by repeatedly detecting the same feature 
point over the sequence. Chang and Aggarwal [6] 
assumed a 2-D kinematic motion model and applied 
the joint probabilistic data association filter (JPDAF) 
to track line segments with the ability to initiate or 
terminate the trajectory of a line segment. Employing 
a 3-D kinematic motion model and a Mahalanobis 
distance-based matching criterion, Zhang and Faugeras 
[18] applied an extended Kalman filter (EKF) to track 
a set of line segments. A fading memory type statistical 
test was suggested to take into account the occlusion 
and disappearance of line segments. 

essence, when the motion of the camera is smooth such 
the smoothness constraints hold, long-sequence-based 

~~ 

approaches are likely to outperform two-frame-based methods. 
On the contrary, if the movements of the camera between two 
frames vary often in the sequence and results in nonsmooth 
image motion, two-frame-based schemes seem to capture the 
variations more promptly. 

In this paper, the merits of both long-sequence and two- 
frame-based methods are considered in designing an algorithm 
for finding trajectories of a set of feature points over a 
sequence. Basically, for each feature point of interest, a Zocal 
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2-D constant translational and rotational motion model is 
employed to exploit the temporal information in a sequence. 
On the other hand, to account for the nonsmooth image 
motion due to 3-D camera movements, a scheme is devised 
to estimate the interframe motion between two windows in 
which the corresponding points of the feature point of interest 
are likely to appear. Consequently, in each frame, the temporal 
information up to that particular frame is explicitly stored in a 
state vector; the state vector consists of the position of the cor- 
responding point in that particular frame as well as the motion 
parameters between the previous frame. Since the state vector 
in each frame contains the accumulated information, tracking 
a feature point over a sequence is therefore decomposed into 
successive two-frame matching problems. However, different 
from two-frame-based approaches, the resulting problems are 
not independent. 

Subsequently, to find the corresponding point of a feature 
point in the consecutive frame, a tracking algorithm containing 
three stages are performed: interframe motion, corresponding 
point identification and temporal information filtering. The first 
stage uses a Probabilistic Data Association Filter (PDAF) to 
obtain the estimates of 2-D motion parameters between two 
frames. The next stage employs techniques such as image 
warping, correlation matching, image differential estimation 
and bilinear interpolation to identify the corresponding point 
in the frame of interest. Finally, the last stage uses an EKF 
to update the state vector so that new temporal information 
can be processed. 

In addition, when a sequence of images is considered, 
the scene in the images changes constantly. Feature points 
detected from the subsequent frames are thereupon likely to 
provide more information for other higher-level applications 
such as obstacle avoidance, time-to-collision, etc. A scheme is 
thus designed to include these newly extracted feature points. 
Accordingly, the algorithm has the ability to track a dynamic 
set of feature points. 

Our approach differs from currently existing discrete feature 
tracking techniques in various aspects: 

1) The algorithm has the merits of both two-frame and 
long-sequence-based approaches. 

2) Tracking a set of feature points is decomposed spatially 
into independent tasks: Except for the 3-D motion-based 
algorithms such as [18], we feel that tracking a feature 
point is a local problem whenever 2-D image motion 
models are employed. This contrasts our work with the 
approach reported in [19]. As shown in the experiments, 
by using a localized tracking scheme, simple 2-D motion 
models can handle the image motion due to general 3-D 
movements of the camera. 

3) The inclusion of new feature points is addressed: The 
algorithm includes a scheme for tracking new feature 
points detected from subsequent frames. The scheme 

quently, different algorithms employ different methods 
in matching a set of currently tracked features to the set 
of features detected in the previous step. The accuracy of 
these algorithms thereupon relies on the feature detection 
schemes [6], [13], [18]. However, detecting the same 
features in subsequent frames is not easy. On the other 
hand, our approach identifies corresponding points using 
other techniques. The outputs from a feature detection 
scheme are only used in the stage of interframe motion. 
Thus, better performance is expected. 

Finally, before we describe the tracking algorithm, we 
would like to point out the limitation of this scheme. The 
algorithm is explicitly designed to establish feature point 
trajectories over an image sequence such that the full or partial 
knowledge regarding the ego-motion of the camera can be 
recovered later. Since a correlation-type matching method is 
employed to identify the corresponding points in subsequent 
frames, the algorithm is therefore unable to track points on the 
boundary of moving objects which move independently from 
the camera. 

The organization of this paper is as follows. Next section 
gives the trajectory model employed in this work. Section 
I11 presents the algorithm for finding corresponding points 
between two frames. A scheme for including new feature 
points is described in Section IV. Experimental results are 
reported in Section V and conclusions are given in Section VI. 

11. TRAJECTORY MODEL 

There are, in general, two ways to describe the motion be- 
tween two frames: 3-D-based and 2-D-based methods. Three- 
dimensional-based methods resort to the understanding of 
the camera motion while 2-D-based approaches apply 2-D 
transformations. For the 3-D-based methods, since the motion 
of the camera needs to be estimated from the images, finding 
corresponding points is then mixed with motiodstructure 
estimation schemes. Because of the coupling of these two 
stages, errors in one stage are likely to affect the accuracy 
in the other one. Besides, there are applications in which the 
motion information is not required while finding matching 
points is important [5].  It is therefore desirable to have a 
method independent of the 3-D motion estimation scheme. 
Accordingly, 2-D-based approaches are considered. 

Among 2-D-based techniques, three transformations: Affine, 
projective and polynomial, are most commonly employed in a 
closely related problem, namely, image registration [4], [ 161. 
Their appropriateness depends on the underlying motion of the 
camera. For convenience, denote 7-k : (x( I C ) ,  y (k)) as a point in 
the lcth frame and t k + l :  (x(k + I ) ,  y(k + 1)) as the resulting 
image point in the (k + 1)th frame. The affine transformations 
account for rotation, translation, scaling and skew between 
two images as follows: 

is efficient in the sense that only a limited number of r k + l  Akrk + tk (1) 
feature points are tracked at all times. 

4) The imperfectness of feature point extraction algorithms 
is considered: Many feature tracking algorithms assume 
two steps in tracking discrete features. The first step is to 
detect features using a feature detection scheme. Subse- 

where Ak and t k  are the transformation matrix and vector. 
Although affine transformations are easy to use, perspective 
distortions between images are not considered. To capture 
more closely the image motion, the projective transformations 
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can be used. They are expressed as 

nk:c(k)  + h k ? / ( k )  + Ck 

d k Z ( k )  + C k ? / ( k )  + 1 
.c(k + 1) = 

where ( a k ,  h k ,  . . . , h k )  are the transformation coefficients. 
Nonetheless, there still exist distortions not accounted by affine 
and projective transformations [4], [ 161. If higher satisfactory 
results are desired, nonlinear transformations such as polyno- 
mial transformations can be used: 

A', \ T I  - I  * *  

r ( k  + 1) = a k 2 , T ( k ) 7 y ( k ) J  (4) 
a=O ,=o 

where Nk is the order of the transformation. ( a k z l ,  h k z , )  are 
the constant polynomial coefficients. 

While the goal of image registration is to match two pictures 
globally, finding corresponding points of a feature point is, 
in essence, a local problem. The locality results from the 
perspective distortion as well as the camera motion. In this 
work, for a feature point of interest, a transfarmation is chosen 
to describe the image motion between two windows in which 
the matching points are likely to appear. Since only two 
windows are concerned, various distortions between the two 
windows are expected to be small. An affine transformation is 
therefore used. Moreover, to exploit the temporal information 
of a sequence, constant translational and rotational dynamics 
are assumed. Together, the image motion of the j th feature 
point, between the kth and ( k  + 1)th frames, is modeled as 

with 

and 

where ( x ]  ( k ) ,  y, ( k ) )  is the position of the corresponding point 
in the kth frame. t,, ( k ) .  t,, ( k ) ,  8, ( k )  respectively denote the 
associated translational movement along the 2; y directions, 
the rotation angle, all between the ( k  - 1)th image and the kth 
image; they are referred to as the motion parameters between 
the ( k  - 1)th frame and the kth frame. wJ(.) is zero mean, 
white noise which is added to account for the deviation of the 
model from the stated assumption. 

As argued above, the consideration of a localized tracking 
scheme results in the choice of the simple affine transformation 

in this work. As shown in the experiments later, this model 
more or less captures the local image motion arising from 
arbitrary camera movements. It is therefore seen as a transfor- 
mation between the 3-D-based tracking methods and the 2-D 
global image registration techniques. 

111. FEATURE TRACKING BETWEEN Two FRAMES 

As mentioned earlier, tracking feature points over a se- 
quence is decomposed temporally into successive two-frame 
matching problems. Therefore, after the trajectory model has 
been chosen, we describe the tracking algorithm between two 
frames in this section. Without loss of generality, assuming that 
the j th feature point has been tracked up to the kth frame, the 
algorithm is described in terms of extending the trajectory to 
the (k + 1)th frame. For clarity, an overview of the algorithm 
is first given and each step of the algorithm is then described 
successively. 

A. Overview of the Algorithm 

To design an algorithm that combines the merits of both 
long-sequence and two-frame-based approaches, two issues 
are considered in devising a tracking scheme: How to exploit 
the temporal information such that the search area containing 
the corresponding point is small, and how to identify the 
corresponding point in the ( k  + 1)th frame. In our work, 
an EKFPDAF is employed to process the temporal informa- 
tion while a correlation-matching-based technique identifies 
the corresponding point to subpixel accuracy. The resulting 
scheme therefore involves three stages: Interframe motion 
estimation, corresponding point identification and temporal 
information filtering. 

More specifically, the two-frame tracking algorithm contains 
several steps that are summarized in the following: 

Interframe motion estimation: In the first stage, an 
interframe motion estimation scheme is applied. The 
scheme uses the accumulated temporal information up 
to the kth frame to obtain an estimate of the motion 
between two neighborhoods which are likely to contain 
corresponding points of the ,jth feature point. 
Corresponding point identification: The second stage 
identifies the corresponding point of the 7th feature point 
in the ( k  + 1)th frame by the following procedures: 

a) Forward window warping and window extraction: 
Based on the interframe motion parameters, this step 
predicts the position of the corresponding point in 
the ( k  + 1)th frame. An image warping technique 
is applied to generate a window centered at the pre- 
dicted location from a neighborhood of the kth-frame 
corresponding point. Also, another window possibly 
containing the corresponding point is extracted from 
the ( k  + 1)th frame. 

b) Grid neighbors matching: The second step employs 
a correlation-type matching method to find the cor- 
responding point. However, the predicted location 
does not necessarily fall onto a grid location in the 
generated window. Alternatively, matching points of 
the four nearest grid neighbors are identified here. 
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c) Correct match ver$cation: Before doing any further 
process, if the corresponding point is less likely to 
be reliably identified based on the matches from 
the previous step, the algorithm stops tracking the 
feature point in this step. 

d) Subpixef accuracy refinement: Once the algorithm 
thinks the corresponding point can be reliably found 
in the ( k  + 1)th frame, this step applies an image- 
differential-based scheme to improve the correlation 
matching results. 

e) Matching point identification: Finally, in the last 
step, the algorithm uses a bilinear interpolation 
scheme to obtain the corresponding point in the 
( k  + 1)th frame. 

Temporal information filtering: The third stage pro- 
cesses the temporal information contained in the ( k  + 1)th 
frame by updating the state vector x5 ( k  + 1). 

After these procedures are completed, the algorithm can 
continue tracking the j th  feature point to the ( k  + 2)th frame. 
We now describe each step of the two-frame feature tracking 
algorithm in the following. 

B. Interframe Motion Estimation 

Temporal information contained in a sequence, in general, 
can be used to facilitate the feature tracking problem. To 
exploit the temporal information and accordingly, reduce the 
search area for finding the corresponding point, an interframe 
motion estimation scheme is devised. In this work, the PDAF 
[2] which was originally proposed for tracking a moving object 
in a cluttered environment is applied for this step. A cluttered 
environment, in the context of target tracking, is referred 
to the situation that there exist ambiguities in observations 
such that the designed tracking scheme does not know which 
observation is correct, or whether it is from the tracked object. 
Similarly, for tracking the .I th feature point, the ambiguities 
appear whenever there are more than one possible matching 
candidates in the ( k  + 1)th frame. 

For convenience, in addition to the trajectory model (6), 
define an observation model which relates the state vector 
z I ( k  + 1) with the noisy, but correct observation z J ( k  + 1) 
as follows: 

Z J ( k  + 1) = ffz~(k + 1) + n~(k + 1) (9) 

where n J ( . )  is the zero mean, white observation noise 

Based on the estimates of the state vector at the kth frame 
x, ( k l k )  

3, ( k I k )  = [.E. ( k  I k )  7jJ ( k  I k )  f J X  ( k  I k )  iJ, ( k  1 I C )  e, ( k  I k ) ]  
(1 1) 

the interframe motion estimation scheme first predicts the 
( k  + 1)th-frame state vector, ij(k + l l k ) ,  according to (6) 

i $ ( k  + Ilk) = f [ 2 j ( k l k ) ] .  

1385 

Fig. 1. Illustrations of the PDAF E is the predicted location and the ellipse 
represents the associated validation gate. { E , .  i = 1. . . . . 5) are the five 
extracted feature points. Among them, { Z 3 , E e .  i o  } are inside the validation 
gate. The position marked by x corresponds to the position estimates 
computed by the PDAF. 

In particular, the predicted location of the corresponding point, 
Z . f ( k  + Ilk) = ( ? j ( k  + l l k ) , y j ( k  + I lk) )  is obtained as 

? j ( k  + Ilk) = cos (B,(klk))Pj(klk) 
- sin ( i j ( k l k ) ) ~ j ( k l k )  + i j Z ( k l k )  

~ j ( k  + 11k) = sin (ej(/ilk))?j(klk) 

+ C O S  (Bj(klk))$j(klk) + i j y ( k 1 k ) .  (13) 

Subsequently, a window centered at Z j  ( k  + 1 Ik) is extracted 
from the ( k  + 1)th frame and the feature point extraction 
algorithm reported in 1121 is applied to the window to identify 
salient feature points. Due to the lack of information as well as 
the desire for higher accuracy, the corresponding point is not 
identified from the extracted points. Alternatively, a validation 
gate based on the Mahalanobis distance [7], [9] is constructed 
to select points for further processing. More specifically, define 
a validation gate centered at Z j ( k  + 1 Ik) and with parameter 
y as 121, 171: 

Vj,k+l(Y) = (2: [z - Z j ( k  + llk)]TS;1(k + 1) 

. [z - Zj(k + Ilk)] I r} (14) 

where S, , (k  + 1) is the covariance matrix of the innovation 
vector z - Zj (k  + Ilk) ,  and y decides the scope of the 
validation gate. A set of extracted points is selected if their 
Mahalanobis distances are less than y. Without loss of gener- 
ality, it is assumed that there are m j ( k  + 1) points, denoted 
as { Z j , t ( k  + l ) , i  = l , . . . , m j ( k  + I)}, inside the validation 
gate Vj,k+l(y). For clarity, Fig. 1 shows a situation where 
five points have been extracted, the three points inside the 
validation gate will be selected. 

Among the m j ( k  + 1) extracted points, due to changes 
between images, each of the mj(k + 1) points can be the 
corresponding point. In other words, if we consider these 
points as noisy corresponding points, we face a situation 
with ambiguities in observations. To process the information 
contained in these noisy observations, the PDAF is thereafter 
employed. 

In essence, the PDAF obtains the information by associ- 
ating different weights to different observations. A weight 
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is assigned to an observation according to the a posteriori 
probability of an event which states that the corresponding 
observation is the correct one given the past data. As shown 
in [2 ] ,  under the assumption that the observations are Normally 
distributed about Z , ( k  + Ilk), these weights can be easily 
obtained. For convenience, denote these weights by {,!?,,%(k + 
l),  i = 0 , 1 , .  . . , m,(k + I)} respectively. Note that @,,o(k + 
1) is the weight assigned to the event that none of the 
observations are correct. 

After each weight has been computed, the PDAF (or the in- 
terframe motion estimation scheme) processes the information 
from the m3 ( k  + 1) observations as follows 

?,(IC + Ilk + 1) =Z,(k + Ilk)  + k , ( k  + 1) 

where k j ( k  + 1) is the gain matrix defined similarly as the 
EKF 

irj.i(k + 1) = Z,,;(k + 1) - Z,(k + l lk) .  (16) 

For illustration purpose, the first two components of the state 
vector Z,(k + Ilk + 1) , (5 , (k  + llk + l ) , c , (k  + Ilk + I)), 
are supposedly marked by x in Fig. 1. It is worth noting that 
if additional information is available such that the ambiguities 
in observations are resolved, then a PDAF is simplified to an 
EKF. This justifies the state vector prediction in (12). 

Consequently, from ( 1 3 ,  the estimates of motion param- 
eters, i.e., the other three elements in Z,(k + l l k  + 1): 
f J z ( k  + 1 Ik + I), fJY ( k  + I lk  + I ) ,  6, ( k  + 1 Ik+ 1). are obtained. 
We refer to them as the interframe motion parameters. Since 
the information in the ( k  + 1)th frame is incorporated, the 
interframe motion parameters more or less capture the image 
motion of the neighborhoods of the jth feature point due 
to the 3-D movement of the camera. With these parameters 
available, the algorithm proceeds to the next stage to identify 
the corresponding point. 

C. Corresponding Point Identijication 

In this stage, the corresponding point of the j th  feature point 
in the ( k  + 1)th frame is found using a correlation matching 
approach followed by an interpolation scheme. The employed 
correlation matching method is similar to the block matching 
technique; however, interframe motion parameters are used so 
that the search area of the corresponding point is small and 
the matching results are more accurate. In addition, the inter- 
polation scheme handles the problem due to the corresponding 
point not being at a grid location. This is important for tracking 
a feature point over a long sequence. Approximating the 
corresponding point by its nearest grid neighbor often leads to 
the situation that the corresponding point slowly moves away 
from the right position. The procedures used in this stage are 
presented in the following. 

I )  Forward Window Warping and Window Extraction: The 
first step in identifying the corresponding point consists of 
obtaining two windows from the kth and ( k  + 1)th frames 
respectively. We refer to the window obtained from the kth 
frame as the reference window I,.,. The other one is called 
the target window 13.t. 

Consider I,,r first. Given the kth frame and interframe 
motion parameters, we want to predict the reference window 
I,,r. Similar problems have been studied in the area of image 
warping [16]. Basically. I,,, is an image that the algorithm 
believes the neighborhood of the corresponding point in the 
( k  + 1)th frame should look like. To obtain I,,v, a more 
accurate prediction regarding the position of the corresponding 
point, z , , , ( k  + I lk)  = ( i , ,T(k  + ilk),$,,, ( k  + l lk)) ,  is used: 

where i, ( k )  = ( i, ( k ) ,  y, ( k ) )  is the position of the previously 
found kth frame corresponding point. Note that (i,(k), $ , ( I C ) )  
is used instead of (iJ(kIk), $ , ( k l k ) ) .  Subsequently, assume 
that pixels which are close to (ij(k), $ , ( I C ) )  in the kth frame 
undergo the same interframe motion, their locations in the 
( k  + 1)th frame are predicted in a similar way. After that, the 
predicted pixeis are assigned with the same intensity values 
as the original pixels. This yields the reference window I,,r 
whose center is z , . , (k  + Ilk). 

is directly extracted 
from the ( k  + 1)th frame. To avoid potential confusion, 
we denote the center of 13,* as &(k + Ilk) = (?,,t(k + 
I l k ) .  y,,t(k + I lk ) ) ,  although z , , t ( k  + 111.) has the same value 
as z , , , ( k  + l l k ) .  

Since I)., is obtained with the knowledge of the interframe 
motion, a correlation matching method can be employed to 
find the corresponding point. Thus, given and I,,t, if 
i3,1.( k f  1 Ik) happens to be a grid point, then the corresponding 
point of the gth feature point can be directly found. However 
i , , r ( k  + Ilk), in general, is not located at a grid point. We 
describe how to handle this situation next. 

2 )  Grid Neighbors Matching: Correlation matching tech- 
niques typically match a grid point in one image with a grid 
point in another image. In our case, the problem appears when 
the predicted location z , , , ( k  + Ilk) does not coincide with a 
grid point. A scheme suggested in [19] is employed to solve 
this problem. The approach is composed of two steps: 

1)  Find matching points, in IJ , t ,  of the four nearest grid 
points of zj, ,  ( k  + 1 I k) using correlation matching meth- 
ods. 

2) Interpolate the results to obtain the desired correspond- 
ing point. We describe the first step here. The second 
step is discussed later. 

Next, by centering at z , , T ( k  + I lk) ,  
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For convenience, denote the four nearest grid points of 
Zj.T(IC + I l k )  as { i , , i ( k  + l I k ) , i  = 1 : . . . , 4 }  

i j , l ( k  + Ilk)  = ( [? j , r (k  + ilk)], [ i j j . T ( I C  + 1lk)l) 
Zj,2(k. + I lk)  = ( [ i j , r ( k  + 11k)], [$ j ,T(k + 1 Ik)] + 1) 
i 3 , 3 ( k .  + Ilk)  =([ i j .r(k + Ilk)] + 1, [Cj ,T(k + Ilk)]) 
Zj.4(k + = ( [ i j . r ( k  + I l k ) ]  + 1, [$j,T(k + I lk)]  + 1) 

(18) 

where [.] represents the floor function. Without loss of gener- 
ality, we focus on finding the matching point of z j . l ( k  + 1 Ik) 
here. The matching points of the other three grid points can 
be found in similar fashions. 

To employ the correlation matching method, a template 
C l ~ , , ~ ( ( i , , ~ ( k  + Ilk.))  centered at i j , l ( k  + I l k )  is first created 
from I].,.. Then, in C l 1 , , ~ ( z j , 1 ( k + l l k ) ) :  to put more emphasis 
on pixels close to Z j ,  1 ( I C  + 1 I k ) ,  each pixel is further assigned 
with a different weight according to the following: 

P l , m  = { otherwise 
if ( I ,  m )  = (0: 0) 

(19) c 1: 

8 max (111: ImI)? 

where c is a constant and ( 1 ,  m)  are integers such that 

I lk ) ) .  The resulting template is thereupon seen as a weighted 
template. Note that for any q E I j , t ,  a template C l ~ ~ , ~ ( q )  
centered at q with similar weight assignments can also be 
obtained. 

Subsequently, if we employ the weighted templates and 
define the similarity measure between p = ( p l ? p z )  E I],,. 
and q = (41,42) E Ij.t  as seen at the bottom of the page in 
(20), where g1(.), gz (.) are the intensity functions of pixels in 
I j , , .  and respectively, and 

([ijJk: + 1Jk)l  + 1, [$j,T(k + Ilk.)] + m) E %JZj,l(k + 

_ .  
l , m  

with N being the number of pixels in both C l ~ , , ~ ( p )  and 
01, (q).  then the matching point of i , , l ( k  + I l k )  is obtained 
by searching for a grid point in I,,t which has the highest 
similarity measure with i , . l(k + l ( k ) .  (For example, -5  5 
1,m I 5 and c = 2 are used in our experiments.) 

A few remarks regarding the above correlation matching 
scheme are given in the following. First, the similarity measure 
(20) has the same property as the well-known correlation 
coefficient [ 191: 

l h J , A t l  I 1. (23)  

'1.1 

Fig. 2 .  Illustrations of grid neighbors matching: i , ,r ,  ,?,,t are marked by x 
in IJ,,. and IJ.t respectively. The dashed square in I,,T represents the template 
f l ~ ~ , , .  (i,,~ ). The dashed square in 13,t is the search area where the matching 
point of z J , l  , Y , , ~ .  is to be searched. The matching points of all four grid 
neighbors of i1,, are supposedly marked by + in Il,t. 

Second, the use of weighted template is expected to achieve 
better localization because of the imperfect feature detection 
scheme. By this, we mean that the extracted feature points 
usually are not located exactly at the corners due to quanti- 
zation effects. Typically, they are a few pixels away from the 
boundaries. Experiments show that by putting more weights 
to pixels near the center of the template helps achieving better 
localization later. Third, since the interframe motion has been 
considered, to find the matching grid point of Z j , l ( k  + ilk), 
only a small areacentered at ([ij,t(IC+llk)], [ y j , t ( k + l l k ) ] + l )  
in Ij,t needs to be searched. (In particular, a 10 x 10 window 
is searched in the experiments.) Fig. 2 illustrates a possible 
configuration obtained in this step. For convenience, we denote 
the resulting matching grid points of { 2j.i ( k  + 1 ), i = 1 . . . ,4} 
as { ~ , . ~ ( k  -t l ) , i  = 1 , . . . ! 4}  . 

Up to now, we have implicitly assumed that the correspond- 
ing point of the j th  feature point exists in the ( k  + 1)th frame, 
and the neighborhoods of corresponding points in the kth and 
( I C  + 1)th frames are similar. However, there exist situations 
where these assumptions may not be valid. We discuss a 
scheme which verifies these assumptions next. 

3) Correct Match VeriJication: It is well known that when 
tracking the j th  feature point to the ( I C  + 1)th frame, the 
corresponding point itself is likely to be occluded. Even if the 
corresponding point were not occluded, the relative structures 
in the neighborhoods of corresponding points in the lcth and 
( I C +  1)th frames may change dramatically. Both situations lead 
to incorrect matches using the previously designed correlation 
matching method. Therefore, before advancing to the next step, 
the hypothesis that the matches { ( z , ~ , ~ ( k + l l k ) ! ~ ~ , ~ ( I C + l ) ) ~  i = 
1, . . . ! 4) are correct is tested here. 

Accordingly, we select a threshold, say T H ,  to decide 
whether ( Z j , i ( I C +  l(lc),~~,~(IC+ 1)) is a correct match for each 
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image-differential-based technique [ 111 is employed for the 
purpose [19]. Again, we illustrate this scheme in terms of 

Recall that g2(.) is the intensity function of pixels in I,,,. 
Under the assumption that g2(.) has an offset A = (&, 6,) 
relative to another intensity function g; (.) at y,, ( I C  + 1) as 

(zAl(k + 1 l % Y , , l ( ~  + 1)). 

.92(y,,dk + 1)) = g;bj,l(h + 11 + A )  (26)  

the image differential scheme approximates the difference 

using the first-order Taylor series expansion: 
between 92(Yj,l(k + 1)) and d(Yj , l (k  + 1)) ,4Yj , l (k  + I ) ) ,  

Fig. 3. Illustrations of Case 2 of correct match verification: x denotes 
the real corresponding point. The original Y , , ~  is denoted by + while the 
extrapolated one is indicated by e. 

d ( ~ ~ , ~ ( k  + 1)) E g ~ ( y ~ , ~ ( k  + 1)) - gk(yj.l(k + 1)) (27) 
= (Y92(Yj,l(k + 1 ) ) , A )  (28) 

i E (1:. . . , 4 }  as follows: 
where (.: .) represents the inner product of the arguments, and 
C g 2 ( ~ ~ , ~ ( k :  + 1)) is the gradient vector 

$ I ~  r - I j , t ( z j , z ( k  + ~ I ~ ) . Y , , ~ ( I C  + 1)) 2 T H  
( z ,  ? ( I C  + llIC),yJ z ( I C  + 1)) is correct 

otherwise. 

v92(YJ,i(k + 1)) 

%2(Y,,l@ + 1)) a92(YJ,l(k + 1)) 
. (29) .( dX dY ) T  

(24) 
$ I ~  rIj,t(zj z(k + 111C),Y3 ,(k + 1)) < T H  

Subsequently, assume that (28) holds for a small neighbor- 
hood around y,,,(k + 1) of size (2wd + 1) x (2Wd + I ) ,  then 
a set of equations can be found: , , 4 }  as n. Three cases 

For convenience, denote the number of correct matches among 

are considered in the following: 
{ ( z , L ( I C + l ~ I C ) . y 3 , Z ( k + 1 ) ) ‘ 1  = 1 ’ .  

Case I :  n, 5 2: In this case, more than two matches of 
grid neighbors of z J , v ( k  + Ilk) are likely to be incorrect. 
Consequently, the algorithm feels that the real corresponding 
point of the j th  feature point can not be reliably found in the 
( I C  + 1)th frame. No further tracking will be attempted. 

Case 2: n = 3: In this case, one of the matches is re- 
garded as unreliable. Without loss of generality, we assume 
that y,,,(k+l) is the unreliable matching point. Since there are 
three other correct matches, the algorithm tends to correct the 
wrong match using an extrapolation scheme. More specifically, 
because {.2,,t(IC+l/k).i = 1:..,4)formasquareinI,, , ,  the 
extrapolation scheme assumes that { ~ , , ~ ( k  + 1). z = 1,. . . .4) 
should form a parallelogram in I,,+. The matching point of 
z,.l(k + 1 Ik) is then replaced by 

where 

with 

G A =  D (30) 

For clarity, we illustrate this procedure in Fig. 3. In Fig. 3,  
assume that yJ,l (k+1) is originally matched to the conceivably 
wrong point marked by + due to changes in the neighborhood. 
Applying (25) yields another matching point for z,,1 (k + 1 J k )  
as indicated in the figure. 

Case 3: 7) = 4: In this case, { ( z , , z ( k  + lJk),y,.Z(IC + 
l)) ,  i = 1, . . . . 4 }  are all confirmed to be correct. 

Among three cases, if either Case 2 or Case 3 applies, the 
algorithm proceeds to the next step. 

4)  Subpixel Accuracy Rejnement: Since { ( 2,,Z ( k  + 1 I I C ) ,  
z = 1. .  . .  .4} are only matched to grid-level accuracy by 
the correlation matching scheme, this step intends to improve 
the matching accuracy to the subpixel level. In our work, an 

such that ( ~ ~ , ~ ( k +  1 ) + ~ , ~ + , ~ )  is in the (2Wd+1) x (2Wd-k 1) 
neighborhood of Y~ ,~ ( IC  + 1). 

Afterwards, the offset vector A is obtained from (30) using 
a least-square approach. (In our experiments, W d  = 3.) zj,1 ( I C +  
Ilk) is then matched to Y ; , ~ ( I C  + 1) ( X : , ~ ( I C  + l ) , ~ ; , ~ ( k  + 
1)) = (k+1)  +A). Similarly, the subpixel matching of the 
other three grid points can also be obtained. We denote these 
four subpixel matching points as { ~ ; , ~ ( k  + 1), i = 1. .  . . ,4}. 

( k  + 1), i = 
l! . . . , 4 }  have been obtained, the algorithm identifies the 
corresponding point of the j th  feature point using a bilinear 
interpolation scheme in this step. 

The scheme uses matches { ( i j , + ( I C  + llk),yj,i(IC + l ) ) ,  i = 
1, . . . ,4} to find the corresponding point of the j th feature 
point. More specifically, assume that for any pixel p = 
(p1,1)2) E Ij,, which is inside or on the boundary of the 

5 )  Matching Point Zdentijication: After { 
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square formed by { i j , , ( k  + Ilk), i = 1,. . . 4): its matching 
point in Ij.t q = (41 ! qz) !  can be obtained as 

41 = a1 + aZpl + a 3 P 2  + a4plpZ 
q2  @1 + PZpl f i j 3p2  + @4plpZ (34) 

where {ai !  pi, i = 1, . . . : 4) are constant coefficients to be 
found. 

Then, since the matching points of { z 3 , i ( k  + l l k ) , i  = 
1,  . . . 4) have been obtained, {a ,  ! i = 1, . . . ,4} can be 
found easily [ 161, [ 191. Accordingly, using these coefficients 
and (34), the corresponding point of the j th  feature point 
i j ( k  + 1) = ( i , ( k  + l ) , $ j ( k  + I ) ) ,  are computed by 

i j ( k  + 1) =yi,,(k + 1) + ts[y;,3(k + I) 
- Yi,l(k + 111 + fy[Y;,Z(k + 1) - Y>,l(k + 111 
+ f&y[Y;,l@ + 1) + Y;,& + 1) 

- Y;,z(k + 1) - YSdk + 111 
E ,  = ? , . T ( k  + Ilk) - [? j , Jk  + l / k ) ]  

cy = $ j , T ( k  + I lk)  - [Gj,T(k + Ilk)] (35) 

where ( i J , T ( k  + l / k ) , $ j , T ( k  + Ilk))  and ( [ i j , T ( k  + 
llk)]:[yj,r(k + Ilk)]) have been defined in (17) and 
(18), respectively. 

This ends the stage of corresponding point identification. 
The algorithm then advances to the next stage of temporal 
information filtering. 

D. Temporal Information Filtering 

To facilitate the tracking scheme, the temporal information 
between the kth and (k + 1)th frames is processed. As 
mentioned earlier, accumulated temporal information up to 
the ( k  + l ) t h  frame is stored in z , ( k  + 1) in our work. 
For convenience, we repeat the trajectory model (6) and the 
observation model (9) here: 

z J ( k  f 1) =f[ZJ(k)]  + w J ( k  f l) 

z,(k + 1) =Hz , (k  + 1) + n3(k + 1). 

Then, given the corresponding point i,(k + 1). the current 
stage employs an EKF to obtain the estimate of z,(k + 

Since f is nonlinear, in order to apply the EKF, the 
l ) , k , ( k  + Ilk + 1) .  

following matrix is first defined: 

The temporal information is then processed by performing 
following steps successively: 

Step 1: State and covariance propagation 

k , ( k f l l k )  = f [ ' J ( I C I k ) ]  
P J ( k + l l k )  = F [ k ~ ( k l k ) ] ~ , ( k ~ k ) F [ i , ( k l k ) ] T + Q , ( k  + 1) 

(37) 

where k,(klk) is defined in ( 1 1 ) .  pJ(klk),p,(k + 
1 Ik), Q, (k+ 1)  are covariance matrices of ( k  Ik) 3, ( k +  
Ilk) and w,(k + l), respectively. 

Step 2: State and covariance update 

K,(k + 1) = P , ( k  + 1lk)HT 
. [ H P 3 ( k  + 1lk)HT + R,(k + 1)]-1 

' [Z,(k + 1) - Hk,(k + Ilk)] 
3 , ( k  + Ilk + 1) =k,(k  + Ilk) + K,(k + 1) 

p J ( k  f Ilk + 1) [ I  - K J ( k  + 1)H]p,(k f I l k )  (38) 

where R, ( k  + 1) is the covariance matrix of n3 ( k  + 1) 
and 1 is the identity matrix. K3 ( k  + 1) represents the gain 
matrix, while k,(k + Ilk + 1) is the updated state vector 
and p ,  ( k  + 1 I k + 1) is the associated covariance matrix. 

Note that in applying the EKF to process the temporal 
information, the corresponding point Z , ( k  + 1) is assumed 
to be Normally distributed around H k J ( k  + Ilk). Despite 
being a heuristic assumption, it works well in our experiments. 
Moreover, 3, ( k  + 1 I k + 1) in particular the position estimates 
( i , ( k  + llk + I).$,(k + l l k  + l)), are only used to exploit 
the temporal information as shown in (13). The observation 
i, ( k  + 1) should be used as the corresponding point of the 
j th  feature point in the ( k  + 1)th frame whenever higher-level 
applications are considered. 

After the temporal information is processed, the task of 
tracking the j th  feature point to the ( k  + 1)th frame is 
completed. The algorithm can now continue tracking the j th  
feature point to the ( k  + 2)th frame. Before presenting the 
experimental results of the tracking algorithm, we digress a 
little bit to present a scheme for including new feature points 
detected in the ( k  + 1)th frame in the next section. 

Iv. INCLUSION OF NEW FEATURES 

When tracking a set of feature points over a sequence, 
it is likely that some points disappear after some frames. 
Accordingly, related tasks may be affected since the amount 
of information reduces. (Here, each tracked feature point is 
assumed to provide useful information, although in some ap- 
plications, only a minimum number of point correspondences 
is required.) In addition, since the scene in the sequence 
constantly changes, it is desirable to track feature points in the 
successive frames which may well contain more information 
than feature points currently being tracked. We suggest a 
scheme which considers the problem of including new feature 
points detected later in the sequence. 

Assume that the algorithm has already completed 
tracking all feature points from the kth frame to the 
(A: + 1)th frame. Without loss of generality, suppose 
that there remain M feature points in the ( I C  + l ) th  
frame and consequently, there exist M validation gates, 

validation gates are defined similarly according to (14). 
Then since VJ,~+1(y) represents a neighborhood of the 
corresponding point of the jth feature point, we consider 
that points inside VJ,k+l(~) more or less carry the same 
information as the j th  feature point for other applications. 
Equivalently, for points extracted from the ( I C +  1)th frame by 
the algorithm reported in [12], only those points outside all of 

(Vl,lc+l(Y)!VZ,k+l(Y),." iVAl,k+l(Y)}. Note that the hf 
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frame number 

# of points in the List 

# of points extracted 

# o f  new points 

frame number 
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1 2  3 4 5 6 7 8 9 I O 1 1 1 2 1 3 1 4 1 5  

0 21 19 28 31 35 38 40 41 40 41 43 43 44 46 

23 23 22 26 24 27 29 29 28 28 25 16 19 20 24 

23 0 9 4 5 5 3 3 4 4 3 1 2 2 5 

16 I7 18 19 20 21 22 23 24 25 26 27 28 29 30 

Fig. 4. Illustrations of the scheme for including new feature points: The 
tracking algorithm tracks eight feature points to the ( I C  + 1)th frame and form 
eight validation gates. z;, . . . .zb are nine newly extracted feature points. 
Only zi. z& and zb are considered as new feature points of the ( I C  + 1)th 
frame. 

# o f  points extracted 

the A4 validation gates are regarded as new feature points. The 
tracking algorithm therefore starts tracking these points only. 

For example, consider Fig. 4. Assume that the tracking 
algorithm maintains eight trajectories in the (k + 1)th frame. 
This results in eight validation gates. Meanwhile, the feature 
extraction algorithm extracts nine feature points from the 
( I C  + 1)th frame. Since only 2:: 26 and 2'9 are outside all 
the eight validation gates, the algorithm only recognizes these 
three as new feature points. 

As shown in the experiments later, the proposed scheme 
is quite efficient. It not only handles the problem of the 
decreasing number of tracked feature points, it also prevents 
the number of feature points from growing too fast. This is 
because that when more feature points are tracked, the image 
region covered by the associated validation gates also enlarges. 

This completes the description of the scheme for including 
new feature points as well as our algorithm for tracking 
a dynamic set of feature points. Next section presents the 
experimental results on four real image sequences. 

18 21 20 21 20 21 20 19 23 25 24 24 27 24 15 

V. EXPERIMENTAL RESULTS 
In this section, tracking results are presented for four real 

image sequences taken by cameras undergoing different types 
of motion. A tracking list which contains the corresponding 
points as well as the new feature points is created and updated 
at every frame. For visual purposes, only the trajectories of the 
feature points tracked from the first frame as well as the new 
feature points added to the tracking list at subsequent frames 
are displayed. The dynamic behavior of the algorithm is shown 
in a table which lists the number of feature point trajectories 
being maintained or removed from the tracking list and the 
number of new points selected from every frame. 

#ofnewpoint s  

A. UMASS PUMA2 Sequence 

The first sequence is known as the UMASS PUMA2 se- 
quence; it consists of thirty 256 x 256 frames. The camera is 
connected to the end of a PUMA robot arm and rotates about 
a rotation center which is close to the image center. Fig. 5 

2 3 1 3 1 3 0 4 0 3 0 3 2 1 I 

frame number 

# o f  points in thelist 

# o f  mints atracted 

it of ooints in thelist 1 49 48 49 48 50 49 51 50 53 50 52 52 53 54 53 11 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

0 12 13 16 18 20 22 22 22 26 27 28 28 28 28 

13 I2 15 12 13 17 15 15 16 15 14 17 1s  17 14 1 

frame number 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

TABLE 111 
NUMBER OF FEATURE POINTS IN THE TRACKING 

LIST FOR THE UMASS ROCKET ALv SEQUENCE 

#of points in the List 

#of points extracted 

#of new points 

~ 

0 19 19 23 22 22 19 16 19 21 24 22 22 23 21 

25 20 16 12 14 13 16 16 13 18 14 21 16 17 14 

25 4 6 1 3 0 7 8 6 6 2 2 3 I 1 

[ # o f n e w p o i n t s  1 2  1 3 5 I i 1 4*  2 3 3 2 4 5 2 1 )  

frame number 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

# ofpaints in thelist 19 19 18 18 21 19 24 25 27 29 28 26 2 i  25 25 

# ofpoints extracted 19 19 19 18 22 15 l i  16 18 18 17 I 6  19 I9 15 
1 

frame number 

# ofpaints in thelist 

# ofpoints extracted 

shows the trajectories for a set of feature points automatically 
extracted from the first frame by the algorithm reported in [ 121; 
the trajectories are shown up to the 19th and 30th frames. 
The new feature points extracted by the feature extraction 
algorithm from frames 3, 19, and 30 are also shown in Fig. 5 in 
addition to the labeled points which were added to the tracking 
list at different time instants. The number of feature points 
being tracked varies with time, as shown in Table I. As seen 
in Table I, the algorithm for adding new points to the tracking 
list efficiently maintains the number of points on the list. 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

19 19 18 18 21 19 24 25 27 29 28 26 2 i  25 25 

19 19 19 18 22 15 l i  16 18 18 17 I 6  19 I9 15 

B. Coke-Can Sequence 

The second sequence is the Coke-Can Sequence, in which 
the camera is approaching the scene, with the focus of expan- 
sion (FOE) located on the coke can. Fifteen frames chosen 
from the densely sampled sequence (every tenth frame) are 
used. The original 512 x 512 images are down-sampled to 
256 x 256 before applying the algorithm. The resulting tra- 
jectories from the first frame to the tenth and 15th frames are 
shown in Fig. 6. As seen from the figures, because of the pure 
translation of the camera, the trajectories of the feature points 
diverge from the FOE. The number of tracked feature points at 
each time instant is listed in Table 11. The new feature points 
added at the second, tenth, and 15th frames are also marked 
in Fig. 6. 

#ofnewpoint s  

C. Rocket ALV Sequence 

The third sequence is the 30-frame UMASS Rocket ALV 
Sequence. Again, the 512 x 512 images are down-sampled to 
256 x 256 before applying the algorithm. In this sequence, the 

2 I 3 5 I i 1 4 %  2 3 3 2 4 5 2 
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Fig. 5.  Tracking results for the UMASS PUMA2 sequence. 

camera is mounted on a vehicle which appears to be moving 
along a straight line to the left and into the image plane with 
almost no rotation. Due to the uneven terrain, the motion of the 
camera is not smooth. The trajectories for the feature points up 
to the 13th and 30th frames are shown in Fig. 7. Table I11 lists 
the number of feature points on the tracking list. It is noted 

that, for the outdoor images acquired from a moving vehicle, 
the scene close to the camera normally appears in the lower 
part of the images. A threshold is therefore set to remove the 
detected points, which are far away such as points on the cloud. 
The extracted feature points as well as the new points selected 
by the criterion in Section IV from the second, 13th, and 30th 
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Fig. 6.  Tracking results for the Coke-Can Sequence. 

I frames are also shown in Fig. 7. In this sequence, many feature D. Martin Marietta R3 Sequence 
points move out of the field of view in the first few frames. 
It is therefore necessary to include new feature points when 
they become available. In addition, it is apparent from the 
sequence that the vehicle has an abrupt change in heading 
direction at the 16th and 20th frames, but the algorithm still 
keeps tracking most of the feature points. 

The last sequence is one of the four sequences distributed 
by Martin Marietta as part of the UGV-RSTA project. As in 
the third sequence, the camera is mounted on a vehicle and 
the images are taken when the vehicle is moving through 
an outdoor environment. The original sequence consists of 
densely sampled images of size 347 x 238; only 30 frames 

I 
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Fig. 7. Tracking results for the Rocket ALV Sequence. 

(every fifth frame) in the original sequence were used in the 
experiment. During the acquisition of the images, the vehicle 
moves to the right and slightly into the scene. Fig. 8 shows the 
trajectories of a set of feature points from the first frame to the 
19th and 30th frames. As seen from the figures, the points on 
the mountain are far away from the vehicle, resulting in small 
movements on the image plane. Fig. 8 also shows the feature 
points detected in the second, 19th, and 30th frames and the 

points added to the tracking list. The dynamic inclusion of the 
new feature points is summarized in Table IV. 

VI. CONCLUSIONS 

An algorithm for tracking a dynamic set of feature points 
to subpixel accuracy over a sequence of images is presented. 
To exploit the temporal information contained in a sequence, 
a simple 2-D kinematic motion model is employed locally 
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Fig. 8. Tracking results for the Martin Marietta R3 Sequence 

TABLE IV 
NUMBER OF FEATURE POINTS IN THE TRACKING 
LIST FOR I H E  MARTIN MARIETTA R3 SEQUENCE 

to describe the trajectory of each feature point in this work. 
Due to the consideration of such localized tracking scheme, 
complicated 3-D ego-motion estimation problems are avoided. 
On the other hand, to account for nonsmooth changes in 

# o f l r e w p o l n ~ i  9 I P 3 o ,I o 1 i o 3 2 o 2 camera, an interframe motion estimation scheme is designed. 

__ 
~~~ 

j frame number 5 3 I 3 G i i 1 IO  I I  12 13 1 4 1  

# d p o i n t s  in thr  list 0 12 I X  21 10 L,l L2 25 25 27 27 30 30 28 ' 

# ofpoinrs ektracred 4 I h  I; I X  1: I5  I3 14 I O  I T  I 1  15 17 10 12 the image motion arising from the 3-D movements Of the 

' frame number 1 1 6  l i  1R 19 20 21 22 23 21 25 2fi 27 28 3 Accordingly, the algorithm is able to follow the arbitrary -~ 

movements of feature points. Meanwhile, a scheme which is 
able to include as well as track new points detected from the 2 2 i 1 1 2 R  

subsequent frames is proposed. As shown in the experiments, 
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the scheme efficiently preserves the information in a sequence 
which makes the algorithm useful for estimating the pose and 
ego-motion of the camera. 
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