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Abstract

While video-based activity analysis and recognition has
received much attention, existing body of work mostly deals
with single object/person case. Coordinated multi-object
activities, or group activities, present in a variety of appli-
cations such as surveillance, sports, and biological moni-
toring records, etc., are the main focus of this paper. Unlike
earlier attempts which model the complex spatial tempo-
ral constraints among multiple objects with a parametric
Bayesian network, we propose a Discriminative Temporal
Interaction Manifold (DTIM) framework as a data-driven
strategy to characterize the group motion pattern without
employing specific domain knowledge. In particular, we es-
tablish probability densities on the DTIM, whose element,
the discriminative temporal interaction matrix, compactly
describes the coordination and interaction among multiple
objects in a group activity. For each class of group activ-
ity we learn a multi-modal density function on the DTIM. A
Maximum a Posteriori (MAP) classifier on the manifold is
then designed for recognizing new activities. Experiments
on football play recognition demonstrate the effectiveness
of the approach.

1. Introduction

In this work we model and recognize coordinated group
activities involving multiple objects from videos. Human
activity analysis and classification has been a research fo-
cus of computer vision community for over two decades
[2, 18]. However, most previous work focused on single
object cases, where the motion and dynamics of an individ-
ual object are investigated. Activities of multiple objects
exist widely in surveillance, sports, and biological observa-
tion records, etc., and consequently modeling and analysis
of multi-object activities will be useful in these applications.
Although the multi-object tracking problem has been ex-
tensively studied [24], much less attention has been paid to

putting the tracked motion pattern of the whole group in a
learning and recognition framework.

In a less complex scenario the individuals in a group un-
dergo a structurally fixed motion [13] or follow identical
dynamics or trajectories [22]. In the former [13] only a de-
viation from a modeled formation is detected; in the latter
[22], an ‘abnormal’ activity is claimed when the configura-
tion of the individuals exceeds an admissible bound. How-
ever, more meaningful semantics may be extracted for less-
structured but coordinated activities. In other words, the
individual objects will have distinctive and varying motion
patterns but the group collectively demonstrates an underly-
ing activity with an explicit sematic identity. A most illus-
trative example is a football game, in which we would like
to recognize the strategy used in each play rather than indi-
vidual players’ movements. Similar examples/applications
exist in other domains, e.g., activities of a group of social
insects like bees [23]. In this paper we use football play
modeling and recognition as our primary example and in
particular test our algorithm on football videos.

A group activity usually occurs according to a planned
goal. In each football play, the offensive players will col-
laboratively follow a pre-determined strategy. The individ-
ual action of each player, meanwhile, is also a result of
interaction with and response to the motion of other play-
ers. A specific group activity pattern, therefore, is deter-
mined by the interactions among objects and their tem-
poral evolution. Modeling and recognizing the temporal
inter-object relationship (i.e., the group activity pattern) has
been mostly handled using a Bayesian network framework
[8, 10, 6, 17, 7]. Bayesian network formulation, though suc-
cessfully applied to modeling activities of single object or
motion, has drawbacks when dealing with group activities.
To completely characterize the role of individual objects,
their action primitives, interactions, and overall plan, the
complexity of the network turns out to be prohibitively high.
This inherent difficulty manifested itself in previous work
(e.g., [10]), where individual objects’ identities, roles and
their individual action primitives were pre-labeled. As si-
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multaneous recognition of individual actions and group ac-
tivity pattern is computationally intensive, the number of
objects considered previously, was usually small, which is
not the case for a large group as a football team. Compared
to the size of the state space and feature space of the net-
work, the amount of available training data is insufficient.
Thus not only the probabilistic dependence might very pos-
sibly be ‘over-fitted’, but also necessary priors are hard to
learn from available data.

A recent work [25] employs the causality of time-series
to describe pairwise activities, but this tool is difficult to be
extended to more objects. Also note that extensive work
has been done in sports video analysis, especially for foot-
ball or soccer [15, 16, 9]. These efforts attempted to detect
or recognize specific types of semantics in the games us-
ing camera motion, color, low-level motion, field markers,
lines, texture, and so on, but did not treat the plays as multi-
object group activities. The approaches are less useful in
areas other than sports.

The work [10], most similar to ours, designed large con-
nected Bayesian networks for football play recognition. In
contrast, we explore a ‘data-driven’ approach. Here we only
assume that the players’ roles and their motion trajectories
are already available. For the former, we may recognize
the roles from the initial play formation with the help of
landmark shape theory [5], and for the latter we may em-
ploy a multi-object tracker [24]. These two problems are
still being researched and beyond the scope of this work.
Specifically, we describe a group activity pattern with a full
four-dimensional object-time interaction tensor, and learn
an optimized tensor reduction kernel to condense it to a
discriminative temporal interaction matrix. The temporal
interaction matrix serves as a compact ‘descriptor’ for the
group activity pattern, and is empirically stable under view
changes. More importantly, given a Riemannian metric the
set of all temporal interaction matrices forms a Riemannian
manifold, on which we are able to establish a probabilis-
tic framework to characterize every class of group activity
pattern. We call this manifold Discriminative Temporal In-
teraction Manifold (DTIM). To learn a multi-modal ‘like-
lihood’ density for each class, we create a basic exponen-
tial density component on the manifold, and incrementally
build up the complete manifold-resided densities with the
basic components. With the established framework, a MAP
classifier is used to recognize a new group activity.

The rest of the paper is organized as follows. In Sec-
tion 2 we obtain a view-stable and discriminative tempo-
ral interaction matrix, via an optimized tensor reduction, to
compactly characterize each group activity. Then in Sec-
tion 3 we focus on the space of temporal interaction ma-
trices, i.e., DTIM, and in particular create a basic proba-
bility density on this non-linear manifold by exploiting its
geometric property. To account for possibly multi-modal

likelihood distribution of temporal interaction matrices on
DTIM, in Section 4 we introduce an incremental, or boost-
ing procedure to build the complete model with the basic
components. Finally, we show the performance using data
from football plays in Section 5. See Figure 1 for a general
flow chart of the proposed approach.

2. View-Stable Discriminative Temporal Inter-
action Matrix

As mentioned, a coordinated group activity pattern
is characterized by the temporally evolving interactions
among objects. To describe mathematically the inter-
action, we define the object-time interaction tensor as
Y (t1, t2, p1, p2), where 1 ≤ t1, t2 ≤ T , 1 ≤ p1, p2 ≤ P .
Here T is the duration during which we observe the group
activity, and P is the total number of objects involved in
the activity (e.g., the total number of players in a football
play). The term Y (t1, t2, p1, p2) describes the ‘interaction’
between object p1 at time t1 and object p2 at time t2. The
interaction can be interpreted in multiple ways. Since the
point trajectories for objects are assumed to be available in
this work, we simply take the distance between object p1

at time t1 and object p2 at time t2 as the interaction term
Y (t1, t2, p1, p2). Once other features are available, they can
be incorporated to provide a more complete description.

The four-dimensional tensor Y is in a sense a full but
possibly redundant descriptor for the activity pattern. We
now seek a more compact and discriminative descriptor,
namely, a temporal interaction matrix X(t1, t2) via a ten-
sor reduction mapping R : Y 7→ X . The motivation for
this reduction is two-fold. On the one hand, as the tensor is
in a high dimensional space, a dimensionality reduction is
generally necessary so that the need for many training sam-
ples may be reduced. On the other hand, more importantly,
the temporal interaction matrix empirically turns out to be
quite stable when view changes, though it is not strictly
view-invariant. Figure 2 shows this ‘view-stability’ of the
temporal interaction matrix obtained from the discrimina-
tive tensor reduction method presented below. Figure 2(a)
and 2(b) show the players’ motion trajectories for the same
play under different views, and Figure 2(c) and 2(d) show
the corresponding temporal interaction matrices, which ap-
pear quite close to each other. Although the example is
synthesized from a play diagram, the same behavior is also
observed for real trajectories. The search for a discrimina-
tive and view-stable matrix descriptor is also inspired by the
previous work on video self-similarity [4] and a recent one
[11], in which view-stability is observed in ‘self-similarity
matrix’ of point trajectories for a single person action.

Instead of using an arbitrary tensor reduction mapping
R, here we use a P × P matrix reduction kernel A.
Let Y (t1, t2) to be the P × P matrix sliced from tensor
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Figure 1. The flowchart of the modeling and recognition framework.

Y (t1, t2, p1, p2) when t1, t2 are fixed, and we define

x(t1, t2) = tr(AT Y (t1, t2)) (1)

and

X = R(Y ) =
x

‖x‖ . (2)

Note that both Y (t1, t2) and A are symmetric due to the in-
terpretation of ‘interaction’ above. Similar notion of sym-
metry also holds for X . The normalization of x helps to
maintain a constant scale for X .

Note that A in fact weighs each element of Y (t1, t2)
with its corresponding element. Therefore, A serves as a
pairwise interaction selector, which emphasizes the interac-
tion between the ith and the jth objects if A(i, j) is large.
If we nomially take A to be the identity matrix, i.e., dis-
carding the interaction between different objects but only
keeping the objects’ self-motion, then the resulting tempo-
ral interaction matrix X is essentially equivalent to the one
used in [11]. Therefore, the question is: is there another A
(or weighting pattern) other than the identity matrix, which
can achieve intra-class view-stability as well as better inter-
class separability? To get such an optimized tensor reduc-
tion kernel, we mathematically enforce view-stability and
separability in our optimization target as described below.
In other words, we formally look for view stability instead
of achieving it in an ad-hoc manner.

From now on we use different subscripts to denote tem-
poral interaction matrices from different sample group ac-
tivities. A pairwise similarity between the kth sample Xk

and the lth sample Xl, s(k, l), is defined accordingly as

s(k, l) = tr(XT
k Xl) =

< xk, xl >

‖xk‖‖xl‖ . (3)

Then the target function to be maximized is defined as

J(A) =
∑

k

(αβ
∑

l∈C1(k)

s(k, l) + α(1− β)
∑

l∈C2(k)

s(k, l)

−(1− α)
∑

l∈C3(k)

s(k, l))

(4)

where C1(k) is the set of same activities as k but from pos-
sibly different views, C2(k) is the set of activities different
from k but belonging to the same class as k, and C3(k) is the
set of activities not belonging to the class of k. By maximiz-
ing J(A) with respect to A with the controllable parameters
0 < α, β < 1, we are able to find an optimized A such that
the cross-view similarity and intra-class similarity are both
maximized while the inter-class similarity is minimized. In
other words, the resulting A will weigh the interactions be-
tween every pair of objects properly such that view-stability
and class separability are simultaneously achieved.

To perform the above maximization, we take a gradient
ascent based approach due to the non-linearity of the target
function with respect to A. To evaluate ∇AJ(A) = ∂J(A)

∂A ,
we evaluate ∂s(k,l)

∂A . After some calculation it can be shown
that

∂s(k, l)
∂A

=
1

‖Xk‖‖Xl‖ (
∑
t1,t2

(Xk(t1, t2)Yl(t1, t2)

+Xl(t1, t2)Yk(t1, t2))− b(k, l))

(5)

where

b(k, l) = tr(XT
k Xl)(

∑
t1,t2

Xk(t1, t2)Yk(t1, t2)
‖Xk‖2

+

∑
t1,t2

Xl(t1, t2)Yl(t1, t2)
‖Xl‖2 ).

(6)

The optimization steps are implemented as repeated line
searches along the gradient directions specified in (5) and
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Figure 2. (a)(b):Simulated players’ trajectories from different view points from play diagram of play type p51curl [10]; (c)(d): The corre-
sponding temporal interaction matrices obtained using the view-stable optimization.

(6). Because a global maximum is not guaranteed, we ini-
tialize A from multiple symmetric matrices in multiple op-
timization processes and pick out the one yielding the max-
imum J(A).

3. Basic Exponential Distribution on the Dis-
criminative Temporal Interaction Mani-
fold

With an optimized tensor reduction kernel A, we com-
pute the temporal interaction matrix Xi from the full inter-
action tensor Yi for the ith activity sample. As has been
shown, the temporal interaction matrices serve as compact,
view-stable, and discriminative descriptors for group activ-
ities, and we would like to establish a probabilistic genera-
tive model for them to characterize the activity class distri-
bution. However, note that X is symmetric with a unit norm
and thus the space of all X’s is not Euclidean. Therefore, to
establish the probabilistic setting we need to first exploit the
geometric property of the space and then build a probability
distribution on it.

3.1. The Riemannian Property of the Discrimina-
tive Temporal Interaction Manifold

Although the set of all temporal interaction matrices is
not an Euclidean space, with a properly defined Riemannian
metric, it becomes a Riemannian manifold. For any two
elements X ′

1 and X ′
2 in the tangent space TX at X , the

Riemannian metric is defined as

< X ′
1, X

′
2 >, tr(X ′T

1 X ′
2). (7)

A related case was detailed recently in [21]. This manifold
is what we mentioned above as Discriminative Temporal
Interaction Manifold (DTIM), denoted as X .

With the above defined Riemannian metric the basic ge-
ometry of DTIM is straightforward. The intrinsic distance
between two temporal interaction matrices X1 and X2 is
given by

d(X1, X2) = arccos < X1, X2 >, (8)

where
< X1, X2 >, tr(XT

1 X2). (9)

The geodesic , i.e., the curve of minimum length connecting
two temporal interaction matrices X1 and X2 , is given by

X(λ) =
(1− λ)X1 + λX2

λ2 + (1− λ)2 + 2λ(1− λ) < X1, X2 >
(10)

where λ is a real parameter between 0 and 1.
The exponential map and logarithmic map are important

for manipulations on the Riemannian manifold. For DTIM
defined above, the exponential map EX : TX → X for
X ′ ∈ TX is defined as

EX(X ′) = cos(< X ′, X ′ >
1
2 )X +

sin(< X ′, X ′ >
1
2 )

< X ′, X ′ >
1
2

X ′.

(11)
The logarithmic map LX : X → TX , which is actually
the inverse map of exponential map, is then given by

LX(Xm) =
arccos(< X, Xm >)

< X∗, X∗ >
1
2

X∗ (12)

where
X∗ = Xm− < X, Xm > X. (13)

It is worth noting that the temporal interaction matrix and
the corresponding DTIM investigated here are closely re-
lated to and rooted in the general theoretic framework of in-
formation geometry [3, 12]. We only present the necessary
geometric properties to be employed in the subsequent sec-
tion. For further study on information geometry the reader
is referred to [3, 12].



3.2. A Basic Exponential Distribution on DTIM
and its Parameter Estimation

It is expected that the temporal interaction matrices from
different activity classes will reside distinctively on the
DTIM. This motivates us to establish a probabilistic ap-
proach on DTIM to model the distribution of the temporal
interaction matrices.

The ‘Gausssian’ distribution on a Riemannian manifold
is initially addressed in [19] with the help of exponen-
tial/logrithmic mapping between the manifold and the tan-
gent plane. Here, we take a direct approach to define a uni-
modal exponential distribution for the temporal interaction
matrix as

p(X;µ, σ, z) =
1
z

exp(−d2(X, µ)
2σ2

), (14)

where µ is regarded as the ‘center’ of temporal interaction
matrices, σ characterizes the scattering of the matrices on
the manifold, and z is a normalization factor. Moreover, d
is the intrinsic distance defined in (8). A temporal interac-
tion matrix intrinsically close to the center will have a high
probability value.

To estimate the parameters involved in the distribution p,
a statistical approach based on observed samples is practi-
cally useful. Generally, we will have a set of weighted sam-
ples {(X1, w1), (X2, w2), · · · , (XN , wN )} observed from
the distribution. We define the weighted Karcher mean,

µ = arg min
ψ

N∑

i=1

wid
2(Xi, ψ), (15)

to be the mean parameter µ. To numerically find µ, the
iterations

µ′(g+1) =
∑N

i=1 wiLµ(g)(Xi)∑N
i=1 wi

(16)

and
µ(g+1) = Eµ(g)(µ′(g+1)). (17)

alternate and µ(g) will converge to the weighted Karcher
mean as g increases. Here E and L are the exponential and
logrithmic maps given in (11) and (12) respectively.

Once the mean is determined, the scattering factor can
be defined in a similar manner as

σ = (
∑N

i=1 wid
2(Xi, µ)∑N

i=1 wi

)1/2. (18)

The calculation for the normalization factor z is analytically
infeasible and we need to take the Monte Carlo approach to
find the integral

I =
∫

X

exp(−d2(X, µ)
2σ2

)dX (19)

and consequently the estimate is z = 1/I . To perform
the Monte Carlo integration we need to generate uniformly
distributed samples on DTIM. To achieve this note that a
T × T temporal interaction matrix is essentially equivalent
to a (1+T )T/2 dimensional unit vector. Therefore we gen-
erate (1+T )T/2 dimensional homogeneous Gaussian vec-
tors and scale them into unit length. Then we transform the
unit length vectors to temporal interaction matrices, which
become uniformly distributed on DTIM.

4. Learning Multi-Modal Densities on DTIM
Suppose we have a training set

{(X1, c1), (X2, c2), · · · , (XM , cM )} where ci ∈
{1, 2, · · · , C} is the activity class label for the ith ac-
tivity sample and there are totally C classes of group
activities. Trivially we may learn a uni-modal distribution
for each activity class using the method in the previous
section. However, the actual scattering of temporal inter-
action tensors on DTIM may not be well approximated by
a uni-modal model. This motivates the necessity to learn
a multi-modal density for each activity class to achieve a
better classification performance.

We aim to model the joint probability density function
of the temporal interaction matrix Xi and the class label ci,
denoted as P J(Xi, ci), defined as

P J(Xi, ci) =
J∑

j=1

bjf j(Xi, ci) =
J∑

j=1

bjπj
ci

pj
ci

(Xi) (20)

where pj
ci

(Xi) = p(Xi;µj
ci

, σj
ci

, zj
ci

) is the uni-modal ex-
ponential component introduced in (14). Here we regard
the joint probability as a linear mixture of J uni-modal like-
lihood functions where the jth component is pj

ci
(Xi). bj

is taken as the mixing coefficient for the jth component,
which for convenience is assumed to be independent of the
class labels. πj

ci
is the class prior for class ci in the jth com-

ponent. For simplicity we take πj
ci
≡ 1

C regardless of j or
ci. Apparently, the ‘mixture-of-p’ distribution will behave
as the ‘mixture-of-Gaussian’ in an Euclidean space, provid-
ing us the capability to approximate the irregular distribu-
tion on a Riemannian manifold analytically.

The determination of a proper number of components
J is non-trivial, preventing us from directly applying an
Expectation-Maximization (EM) procedure to learn all the
components and mixing coefficients. Instead, we build up
this linearly-combined multi-modal distribution in an incre-
mental manner. In other words, we will ‘boost’ the distribu-
tion on DTIM. Suppose that we have in some way achieved
a J-component density P J(X, c) and we want to update it
into a (J + 1)-component one by linearly mixing it with a
new f(X, c),

P J+1(X, c) = (1− α)P J(X, c) + αf(X, c), (21)



and we aim to maximize the log posteriori class probability
for all samples in the training set

∑M
i=1 log P J+1(ci|Xi).

Expanding the expression we get

M∑

i=1

log P J+1(ci|Xi) =
M∑

i=1

log
P J+1(Xi, ci)
P J+1(Xi)

=
M∑

i=1

log
(1− α)P J(Xi, ci) + αf(Xi, ci)

(1− α)P J(Xi) + αf(Xi)

=
M∑

i=1

log
P J(Xi, ci) + εf(Xi, ci)

P J(Xi) + εf(Xi)

(22)

where P J(Xi) =
∑C

c=1 P J(Xi, c), f(Xi) =∑C
c=1 f(Xi, c), and ε = α

1−α .
A practically feasible optimization method to determine

both f(·, ·) and ε, is expanding log P J+1(·|·) into a Tay-
lor’s series around P J(·, ·) with εf as the deviation (or in-
crement) from P J(·, ·), and ignoring the higher order terms
as

M∑

i=1

log P J+1(ci|Xi)
.=

M∑

i=1

log P J(ci|Xi)

+ε
M∑

i=1

∂ log P J+1(ci|Xi)
∂P J(Xi, ci)

f(Xi, ci)

.=
M∑

i=1

log P J(ci|Xi) + ε
M∑

i=1

1− P J(ci|Xi)
P J(Xi, ci)

f(Xi, ci)

=
M∑

i=1

log P J(ci|Xi) + ε
M∑

i=1

hif(Xi, ci).

(23)

The approximate identity

∂ log P J+1(ci|Xi)
∂P J(Xi, ci)

.=
1− P J(ci|Xi)

P J(Xi, ci)
, hi (24)

is derived in the Appendix. Note that samples with a small
posterior probability will receive a larger weight, i.e., the
samples not well accounted for under the current model will
be paid more attention through weight h. For this reason the
hi’s can be regarded as ‘discriminative weights’.

It is now clear that once
∑M

i=1 hif(Xi, ci) is maximized
we can easily find the best ε (or α) such that the posteriori
probability is maximized. Therefore, the key optimization
is to maximize

M∑

i=1

hif(Xi, ci) =
M∑

i=1

hiπci
pci

(Xi) (25)

by determining the corresponding µci , σci , zci (i.e.,
µc, σc, zc, c = 1, 2, · · · , C), taking discriminative weights
hi into account.

Figure 3. Samples of football plays used in the experiment.

This ‘discriminatively weighted parameter estimation’
for each component falls well into the EM frame-
work. The E-step for this iterative procedure is wi =
(hif(Xi, ci))/(

∑M
i=1 hif(Xi, ci)) and the M-step is essen-

tially to maximize
∑M

i=1 wi log f(Xi, ci) w.r.t. µc, σc, zc.
The optimal µc here, is exactly the weighted Karcher mean
with weights wi introduced in Section 3.2. Therefore, to
implement the M-step we need and only need to perform
the parameter estimation presented in 3.2 . After f is de-
termined in this way, a line search for the best ε is followed
to achieve the maximum

∑M
i=1 log P J+1(ci|Xi). If no ε

can improve the discriminativeness, the algorithm termi-
nates and the final number of components is J .

The multi-modal density learning presented above fol-
lows the line of recent work on boosting non-discriminative
density functions [20] and is also inspired by the discrimi-
native boosting for sequence classification [14]. However,
in this work we are investigating a multi-class multi-modal
probabilistic model for classification on a nonlinear mani-
fold rather than in the Euclidean space, and in particular,
applying the method to group activity recognition.

5. Experiment
The learning and recognition framework described above

has been implemented on a collection of NCAA football
games (sample snapshots in Figure 3). The play types have
been annotated and the time span for each play is marked
by an experienced person. The locations of each player are
measured at time instants equally sampled within the time
span. A constant amount of time duration is used for all
plays so as to maintain a constant size of temporal interac-
tion matrix. In particular, for activity samples with varing
lengths, we always normalize their time scales to T (We set
T = 10), with trajectory interpolation and temporal resam-
pling if necessary. To find the time span of the occurrence
of an activity automatically, i.e., group activity detection, is
not considered in this work.

We perform experiments on ground-truth data, where
tracks for each player are manually labeled. The eleven
trajectories for the eleven players on the offensive side are
thus obtained for each play. Once a reliable multi-object
tracker (with object role identification) is available, it can be
incorporated for realizing a joint-tracking-and-recognition



Table 1. The confusion matrix of play recognition: H,C,M,L, and
R stand for HITCH Dropback, Combo Dropback, Middle Run,
Wideleft Run, and Wideright Run respectively.

C H M L R
C 93.1 0.2 5.6 0.4 0.7
H 0.1 71.0 6.5 15.2 7.2
M 1.6 1.3 77.2 12.4 7.5
L 0.4 0.6 0.6 95.4 3.0
R 0.8 0.1 0.1 2.5 96.5

system. Though view points vary among different plays,
no geometric transformation is applied since view-stability
will be enforced when learning the optimal tensor reduc-
tion kernel. However, we do put the origin at the center
of the objects and normalize the distances between the ob-
jects and the center. From more than a hundred play sam-
ples we select five play types, including Combo Dropback,
HITCH Dropback, Middle Run, Wideleft Run and Wideright
Run, totaling a number of 56 play samples. Other play types
with too few samples are not considered. To get a sufficient
amount of training samples, we generate multiple new play
samples from different views for each of the existing plays.
To achieve this we apply view transformations to each of the
56 samples, with 12 typical views selected from the origi-
nal dataset. The view transformations are simply locally
affine ones whose parameters are determined by locating
the landmark points of the football field. Learning and then
classification runs a multiple of times independently, each
of which uses a random division of sample collection into
training (80%) and testing (20%) sets. Other free param-
eters (e.g., α, β in Section 2) in the framework are deter-
mined by experimental evaluation.

The average confusion matrix is shown in Table 1, in-
dicating the percentage by which a specific play type is
recognized as itself/another. An average recognition rate
of 87.9% is observed from the confusion matrix. The
fully quantitative comparison with previous work, espe-
cially [10], is difficult due to a completely different frame-
work as well as different datasets being used. Note that the
previous work is based on Bayesian network modeling with
explicit domain knowledge about football game being in-
corporated. In contrast, the model in this paper works in a
data-driven manner and thus easily extendable to other gen-
eral coordinated group activities.

To evaluate the effectiveness of optimal tensor reduc-
tion as well as probabilistic modeling on DTIM, a com-
parative study is carried out with a baseline descriptor and
three baseline classifiers. The baseline descriptor to com-
pare with is the ‘nominal’ temporal interaction matrix ob-
tained from the trivial tensor reduction kernel - the identity
matrix. The baseline classifiers are selected as two near-
est neighbor (NN) classifiers and supporter vector machine
(SVM) classifier. One of the two NN classifiers defines the

Table 2. Comparison of recognition performance (%).
baseline optimized

NN Euclidean 73.2 83.7
NN on DTIM 75.8 84.5

SVM 69.3 79.8
Probabilistic modeling on DTIM 76.3 87.9

distance between two temporal interaction matrices as the
usual Euclidean distance (NN Euclidean). The other, in-
stead, makes use of the intrinsic distance on DTIM (NN on
DTIM). The SVM classifier is employed from libSVM [1]
where the multi-class classifier is implemented as a set of
one-to-one binary ones. In each of these SVMs a radial ba-
sis function kernel is used together with the default param-
eter settings of the software. Classification is performed by
taking majority of the votes from individual SVMs.

The overall correct recognition rate is shown in Table 2.
In all cases the improvement brought by optimized tensor
reduction is clear. On the other side, by comparing prob-
abilistic modeling on DTIM with the other three baseline
classifiers, we actually investigated its advantage over three
typical philosophies besides a Bayesian network paradigm.
The NN Euclidean classifier ignores the intrinsic geometry
of DTIM but regards all temporal interaction matrices as el-
ements in Euclidean spaces. The SVM takes into account
the probable nonlinear phenomenon in the Euclidean space
but bypasses it with the kernel trick to pursue linear seper-
ability. NN on DTIM, meanwhile, exploits the essential ge-
ometry of the data space without a statistical point of view.
The comparison among the four demonstrates an empirical
performance merit of the combination of both geometrical
modeling and statistical modeling. Note that NN is only
slightly weaker than proposed framework due to the relative
‘flatness’ of DTIM. Geometrical and probabilistic modeling
on more ‘curved’ manifold will potentially achieve more
significant performance gain.

6. Conclusion
In this work we investigated the modeling and recog-

nition of coordinated multi-object activity in a data-driven
manner. In particular, we proposed a temporal interaction
matrix to characterize a group activity view-stably and dis-
criminatively. We established the Riemannian geometry for
the space of temporal interaction matrices, DTIM, and set
up the ‘intrinsic’ probabilistic mechanism for random sam-
ples on DTIM. To better approximate the possibly complex
distribution on DTIM, we further recursively built multi-
component densities on DTIM in a way that inter-class sep-
arability is enhanced. We demonstrated the effectiveness
of the proposed framework using football plays as experi-
mental data. We made little use of football-specific domain
knowledge and the framework is more generally extensible



to other types of group activities.
Beyond this initial attempt to address multi-object activ-

ity problem, in the future we will investigate the following.
The temporal interaction matrix relies on correctly obtain-
ing point trajectories, which brings the issue of a more ro-
bust descriptor from incomplete/errorneous trajectories. A
strict view-invariant approach, beyond an empirically view-
stable descriptor remains a challenge. As has been men-
tioned, detection and segmentation of a particular group
activity pattern, especially with a changing number of in-
volved objects, is also of interest. Moreover, it is also inter-
esting to look into activities from other domains other than
football games. Last but not least, the study on probabilistic
modeling on a nonlinear manifold is still in its infancy and
thus worth further study.

7. Appendix: Derivation of (24)
By elementary calculus it is obvious that

∂ log P J+1(ci|Xi)
∂P J(Xi, ci)

=
∑

c=1,··· ,C,c 6=ci
P J(Xi, c) + ε

∑
c=1,··· ,C,c 6=ci

f(Xi, c)
(P J(Xi, ci) + εf(Xi, ci))(P J(Xi) + εf(Xi))

.

(26)

Since εf is a local deviation from P J in Taylor’s expansion,
here we may assume εf ¿ P J . Hence we ignore the terms
of εf and have the approximation

∂ log P J+1(ci|Xi)
∂P J(Xi, ci)

.=

∑
c=1,··· ,C,c 6=ci

P J(Xi, c)
P J(Xi, ci)P J(Xi)

=

∑
c=1,··· ,C,c 6=ci

P J(c|Xi)
P J(Xi, ci)

=
1− P J(ci|Xi)

P J(Xi, ci)
.

(27)

Note that the best ε is determined after f is learned.
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