
Towards View-Invariant Expression Analysis
Using Analytic Shape Manifolds

Sima Taheri, Pavan Turaga and Rama Chellappa
Center for Automation Research, UMIACS

University of Maryland, College Park, MD 20742
Email: {taheri, pturaga, rama}@umiacs.umd.edu

Abstract— Facial expression analysis is one of the important
components for effective human-computer interaction. How-
ever, to develop robust and generalizable models for expression
analysis one needs to break the dependence of the models on
the choice of the coordinate frame of the camera i.e. expression
models should generalize across facial poses. To perform this
systematically, one needs to understand the space of observed
images subject to projective transformations. However, since the
projective shape-space is cumbersome to work with, we address
this problem by deriving models for expressions on the affine
shape-space as an approximation to the projective shape-space
by using a Riemannian interpretation of deformations that
facial expressions cause on different parts of the face. We use
landmark configurations to represent facial deformations and
exploit the fact that the affine shape-space can be studied using
the Grassmann manifold. This representation enables us to
perform various expression analysis and recognition algorithms
without the need for the normalization as a preprocessing step.
We extend some of the available approaches for expression
analysis to the Grassmann manifold and experimentally show
promising results, paving the way for a more general theory of
view-invariant expression analysis.

I. INTRODUCTION

The goal of facial expression analysis is to create systems
that can automatically analyze and recognize facial feature
changes and facial motion from visual information. This
has been an active research topic for several years and has
attracted the interest of many computer vision researchers
and behavioral scientists, with applications in behavioral
science, security, animation, and human-computer interaction
[1].
Facial expressions occur along with the head motions

and pose variations, especially when there are spontaneous
human-to-human interactions. Therefore, it is necessary for
facial expression analysis algorithms to be able to jointly
analyze the head pose and facial expressions, or in other
words be invariant to pose changes. But this is a challenging
task especially due to large variations in the appearance of
facial expressions in different views and also the nonlinear
coupling of these different sources of variations in the
observed images.
While most of the proposed methods for facial expression

analysis can only handle frontal-view faces, [2]–[4], there
has been recent progress in designing pose-invariant facial
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expression recognition algorithms. Previous work treating
pose invariance in facial expression analysis can be generally
divided into two groups of approaches as those based on
a 3D face model and those based on a 2D face model. It
should be noted that since facial geometry conveys important
information about a human’s emotional state, one of the
common approaches for analyzing facial expressions is by
using face shape models. Therefore, our focus in this paper
is on the geometry-based approaches.
There are several approaches that use a 3D face model and

jointly estimate the rigid and nonrigid facial deformations
[5]–[9]. In these approaches, the estimated rigid motion of
the face is a byproduct of the system and can be used
for tracking facial landmarks, while the non-rigid motion
is further processed for expression analysis. The main dis-
advantages of these 3D shape model-based approaches is
that they are computationally expensive, they require time-
consuming initialization process, and the 3D model fitting
techniques may not converge. Moreover in a HCI application,
2D images and 2D shapes are far more easily available than
3D shapes. Thus, the focus of our work is on using 2D facial
geometries.
Since 2D face images are projections of 3D faces, the

rigid head motions and non-rigid facial expressions are non-
linearly coupled in the captured 2D images. This fact has
made the pose-invariant facial expression analysis based on
2D shape models hard to solve [10]. Most of the available
approaches that use a 2D shape model and facial landmarks,
decouple the rigid and nonrigid motions via normalization by
aligning all the available configurations to a reference frame
[11]–[13]. But these normalization-based approaches depend
on the choice of the reference frame which is usually made
arbitrarily [14]. There is also a very recent normalization-
based algorithm proposed by Rudovic et al. [10] in which
using some trained regression functions, the 2D landmark lo-
cations in non-frontal poses are mapped to the corresponding
locations in the frontal pose. This method shows promising
results for pose-invariant expression recognition, however,
it requires a pose estimation phase before performing pose
normalization and errors in pose estimation may contribute
to recognition errors.
The main drawback of all these normalization-based ap-

proaches is that they ignore the intrinsic geometry of shape-
space and instead they consider the aligned shapes as points



in the Euclidean space. In this paper, we emphasize the
importance of understanding shapes as equivalence classes
across view-changes instead of as a vector derived from
features such as active shape models. This would enable ex-
pression models to generalize across views. Since the 2D face
images are the projections of 3D faces, the projective shape-
space, which carries information about the configuration of
the facial landmarks that are invariant to the camera view
point, is of most importance in expression analysis.
Equivalence classes are difficult to work with from a

statistical perspective and we need a canonical representative
from them that can be used for statistical analysis. For the
similarity shape-space (Kendall’s shape-space) [15], concepts
such as pre-shape and Procrustes analysis are well-studied.
The affine shape-space for m landmark points in IRk is
identified with the set of all k-dimensional subspaces of IRm,
[14], [16], which is a Grassmann manifold. This manifold
also has well-studied mathematical structure that can be used
for statistical analysis [17]–[20]. But similar advances in
projective shape-space have been slow due to overemphasis
on the importance of similarity shapes in image analysis
[21]. Thus, suitable metrics are hard to define for comparing
projective shapes.
On the other hand, projective transformations can in many

cases be approximated by affine transformations. Therefore,
here we perform expression analysis using the affine shape-
space since its structure is well-understood. But the eventual
goal is to achieve invariance to large view-changes via
projective shape-spaces and this work is a small step in that
direction so that the advantages of using shape spaces for
pose-invariant expression analysis can be realized.
In section II, we discuss the landmark-based representa-

tion of facial geometry. We then discuss the affine shape-
space and show that the facial landmark configurations can
be identified as points on the Grassmann manifold. Some
mathematical discussions on the Grassmann manifold are
also provided. Then in section III we describe the extension
of some of the facial expression analysis algorithms to this
shape-space and present experimental results. Section IV
concludes the paper.
Contribution: Our main contribution is to show the

advantages of using a proper shape-space for pose-invariant
facial expression analysis. Modeling the facial landmark
configurations as equivalence classes on the affine shape-
space, as an approximation to the projective shape-space,
not only decouples the rigid and nonrigid facial motions, but
also offers a well-defined underlying structure for the data.
Most of the available algorithms for expression analysis can
easily be extended to this shape-space.

II. FACIAL EXPRESSIONS ON THE MANIFOLD

Non-rigid facial deformations can be encoded using facial
action coding system (FACS), introduced by Ekman et al.
[22], where each action unit (AU) determines the shape of
its corresponding facial components. Figure 1 (second row)
shows the face of a subject with different AUs. As it can
be seen, while AU-1 implies a raised inner brow, AU-27

corresponds to a wide open mouth. As the figure shows, the
geometry of facial components is a good cue for representing
and recognizing most of the AUs/expressions. In our work
we use the landmarks on the face to represent the facial
geometry at each frame of an expression sequence.

A. Facial Geometry

Landmark-based face shape representation is one of the
most widely used approaches for geometric modeling of
faces. Here we model the facial geometry using a m×2 ma-
trix L = [(x1, y1), (x2, y2), ..., (xm, ym)]T in IR2. Figure 1
shows the locations of 2D landmarks on the faces in different
databases. To model the non-rigid deformations correspond-
ing to each expression, the first step is to decouple the rigid
and non-rigid deformations of the landmarks. Since the shape
observed in an image of a face is a perspective projection of
the 3D locations of the landmarks, projective shape-space is
an appropriate choice to realize invariance with regard to the
camera angle. Modeling the facial geometry as equivalence
classes in the projective shape-space introduces a new way
of statistical analysis of 2D faces which is independent of the
face poses. But advances in statistical analysis of projective
shapes are still preliminary. On the other hand, projective
shapes in constrained situations can be approximated with
affine shapes. Therefore, we limit our discussions to affine
shape-spaces.
All the affine transformations of a shape can be derived

from the base shape simply by multiplying the centered
shape matrix, L̃base, by a 2× 2 full-rank matrix on the right
(translations are removed by centering). Multiplication by a
full-rank matrix on the right preserves the column space of
the matrix, thus the 2D subspace of IRm spanned by the
columns of the centered shape, i.e. span(L̃base), is invariant
to affine transformations of the shape. Subspaces such as
these can be identified as points on a Grassmann manifold
[17].
Given a sequence of a face performing an expression, we

would like to model the facial deformations that generate
such a sequence. Based on the above discussions, a sequence
of faces is represented as a sequence of points on a Grass-
mann manifold. So, we can model the facial deformations
via geodesics on the manifold, where a geodesic is a path of
shortest length on the manifold between two given points.
The geodesic emanating from a point on the manifold can
be characterized by a velocity vector on the tangent plane
at that point. Therefore, we parametrize the facial deforma-
tions corresponding to each expression/AU as a velocity (or
sequence of velocities) with which a point on the manifold
(neutral face) should move in order to reach the final point
(apex) in unit-time. In the following, we briefly describe how
to compute these parameters on the Grassmann manifold.
The readers are referred to [19], [20] for a more in-depth
discussion of the mathematical details.

B. Geometry of the Grassmann Manifold

A Grassmann manifold, Gm,k, is the space of k-
dimensional subspaces in IRm. By fixing m, k throughout
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Fig. 1. A sequence from the Cohn-Kandade database (first row), and a subject in the Bosphorus database performing various AUs (second row). The
landmark locations are shown on the faces.

the paper we avoid adding suffixes to index the set G. Each
element of G can be identified by a uniquem×m projection
matrix, P , onto the k-dimensional subspace of IRm 1. Let
IP be the set of all m×m symmetric, idempotent matrices
of rank k. Then, IP is the set of all projection matrices and
hence is diffeomorphic to G. The identity element of IP is
defined as Q = diag(Ik, 0m−k,m−k), where 0a,b is an a× b
matrix of zeros and Ik is the k × k identity matrix.
A Grassmann manifold G (or IP ) is a quotient space of

the orthogonal Lie group, O(m). Therefore, the geodesic

1There are two approaches for representing points on the Grassmann
manifold, either as tall-thin m × k matrices, or as square idempotent
projection matrices. The former while more efficient, requires involved
quotient-space interpretations. The projection matrix representation, on the
other hand, has relatively simpler analytical and geometric properties, but it
is computationally intensive. However, since we are using sparse landmarks,
m is typically in the order of 50 − 100, thus the extra computational
burden is not very significant. Therefore, we work with the projection matrix
representation for the Grassmann points.

Fig. 2. Process of computing a geodesic on the Grassmann manifold by
lifting it to the particular geodesic in O(m), [20].

Fig. 3. Parallel transport of a vector around a closed loop on the manifold.
The direction and orientation of the vector changes to match the local
structure of the destination point.

on this manifold can be made explicit by lifting it to a
particular geodesic in O(m) [20]. This process is illustrated
by Fig 2. Then the tangent, X , to the lifted geodesic curve
in O(m) defines the velocity associated with a curve on
IP . The tangent space of O(m) at identity is o(m), the
space of m × m skew-symmetric matrices, X . Moreover,
in o(m) the Riemannian metric is just the inner product
〈X1, X2〉 = trace(X1X

T
2 ). This property is inherited by IP

as well.
The geodesics in IP passing through the point Q (at

time t=0) are of the type α : (−ε, ε) �→ IP , α(t) =
exp(tX)Q exp(−tX), where X is a skew-symmetric matrix
belonging to the set M , where

M =

{[
0 A

−AT 0

]
: A ∈ IRk,n−k

}
⊂ o(m) (1)

Therefore, the geodesic between Q and any P is completely
specified by an X ∈ M such that exp(X)Q exp(−X) = P .
We can then construct a geodesic between any two P1, P2 ∈
IP by rotating them to Q and some P ∈ IP .
One important concept is the parallel transport which

is a smooth operation between tangent spaces that allows
us to transfer tangent vectors between points while locally



preserving direction and orientation [19]. In Euclidean space,
the parallel transport is simply performed by moving the base
of the arrow. However, moving a tangent vector by this tech-
nique on a manifold will not generally be a tangent vector.
Figure 3 illustrates the parallel transport on the manifold. As
the figure shows the result of parallel transport depends on
the path along which we move the tangent vector. Readers are
referred to [19] for more details on parallel transport on the
Grassmann manifold. Some Grassmann related algorithms
which will be of use in expression analysis are provided in
the appendix.

III. FACIAL EXPRESSION ANALYSIS

In this section the goal is to perform expression analysis
using the equivalence classes of face shapes on the Grass-
mann manifold. We show how we can extend most of the
available expression analysis algorithms to the Grassmann
manifold in order to perform expression analysis in an
affine-invariant manner. In particular, we discuss the linear
modeling of facial landmark deformations using ASM as
well as modeling the nonlinear deformations using a nonlin-
ear dimensionality reduction technique. We also discuss the
AU and basic expression recognition by learning statistical
models on the Grassmann manifold.
We use three databases to evaluate the strength of this

approach. The first one is the Bosphorus database [23] that
is composed of a selected subset of AUs as well as the six
basic emotions for 105 subjects. For each subject, the neutral
face and the face in the apex of various AUs and emotions are
presented. In addition, 22 landmarks per face are provided by
the database. However, we manually marked 75 landmarks
for some of the subjects (Fig. 1). The second database is
the Cohn-Kanade’s DFAT-504 database (CK) [24], which
consists of more than 100 subjects, each performing a set
of emotions. The sequences begin from neutral or nearly
neutral faces and end at the apex state of the expression.
The sequences were annotated by certified FACS coders.
We also manually labelled the sequences into the six basic
expressions. Moreover, 59 landmarks per faces are available
[25]. The third database is a sequence of a talking face 2

with 5000 frames which shows the face of a subject while
talking. The facial landmarks are also provided for this
database. Figure 1 shows some examples of the images in
these databases.

A. Facial deformations modeling

By representing the facial landmark configurations as
equivalence classes on the affine shape-space, we transform
the data to the space of nonrigid deformations. In other
words, starting from a projection matrix on the Grassmann
manifold corresponding to a neutral face, it is ensured that
moving in each direction on the manifold is corresponding
to a nonrigid deformation of the initial configuration. These
nonrigid facial deformations can be statistically modeled, de-
pending on the linear or nonlinear assumptions for the defor-
mations, by calculating the principal directions of variations

2http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data
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Fig. 4. PCA versus PGA bases for facial landmarks representation and
reconstruction.

using principal geodesic analysis (PGA) or by estimating
the expression manifold through nonlinear dimensionality
reduction.
1) Linear deformations modeling: As we know, assuming

a linear structure for the facial deformations, active shape
models (ASM) learn the principal directions of facial geo-
metric variations using PCA. The same idea can be extended
to the Grassmann manifold using PGA, [26], which is a gen-
eralization of PCA to the manifold setting. Representing the
facial landmarks with different expressions as points on the
Grassmann manifold, the principal directions of variations
can be learned. For this purpose, the first step is to find
the intrinsic mean of the points on the manifold using the
Karcher mean algorithm for the Grassmann manifold [20],
[27]. Then the principal geodesic directions are calculated
using the warped data to the tangent plane at the mean point.
Figure 4 compares the PCA and PGA approaches for

recovering the face shape, in the talking face database, under
the noise. Using manually marked 2D landmarks on the faces
in this database as ground truth, we perturb the position of
landmarks independently with different levels of Gaussian
noise. Then we use these two approaches to reconstruct the
shapes from the noisy observations. We apply the similarity
alignment method on the faces to bring them to the same co-
ordinate frame before performing PCA. As the figure shows
the PGA bases have higher resilience against noise. This can
be due to the fact that modeling the variations on the shape-
space ensures that the variability being computed is from
shape changes only and not due to rigid transformations.
2) Nonlinear manifold learning: Since the linear assump-

tion for facial deformations is not always valid, there are
several approaches that consider the geometric variations of
facial components on a low-dimensional nonlinear manifold
and learn such a manifold using nonlinear dimensionality
reduction algorithms [7], [12], [13]. The nonlinear dimen-
sionality reduction algorithms preserve the local structure of
the data while reducing dimensionality. Therefore, consid-
ering the true structure of the data is important for these
algorithms.
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As we emphasized earlier, the face shapes after quotienting
the affine group lie on the Grassmann manifold. The local
structure of the data on this space can be employed to
learn the low-dimensional nonlinear expression manifold. A
simple dimensionality reduction algorithm is locally linear
embedding (LLE), [28], which is a neighborhood-preserving
embedding of high-dimensional inputs. This algorithm can
be extended to the data on the Grassmann manifold to
nonlinearly project the subspaces to the lower dimensional
space.
We compare the results of low-dimensional manifold

learning using the data on the Grassmann manifold versus
normalized data in the Euclidean space. For this purpose the
dimensionality of the training data, composed of the facial
landmarks for 80 subjects in the Bosphorus database having
three different expressions, Neutral, AU-12, and AU-27, is
reduced to one-dimension using the LLE method. Figure 5
illustrates the distribution of the data in the LLE embedded
space for both Euclidean and manifold cases. As the figure
clearly shows, for the data on the Grassmann manifold the
one-dimensional representations are well-separated for dif-
ferent classes compared to that for the data on the Euclidean
space.

B. AUs template learning

Facial expressions are combinations of several AUs occur-
ring simultaneously or sequentially in different parts of the
face. Recognizing these AUs is a proper way for expression
recognition. To this end, we learn a template for each AU
on the Grassmann manifold. A sequence of faces performing
an AU is represented as a sequence of facial landmarks
L = {Li}n1 where L1 corresponds to the neutral face and Ln

to the apex point (in our cases). This sequence is equivalent
to a sequence of subspaces/projection matrices P = {Pi}n1
which can be considered as samples of a curve on the
Grassmann manifold (Fig. 6).
We represent each sequence as a piecewise-geodesic curve

and model each piece using its velocity vector. Therefore,
we have a sequence of N velocity vectors A = {Ai}, where
Ai = velocity(Pi → Pi+1) and N is the number of seg-

ments. For the case of CK database, we chooseN to be equal
to the number of sequence frames minus one. But for the
Bosphorus database, since only the initial and final images
of each sequence are available, each AU is represented using
the velocity vector corresponding to the geodesic between P1

and Pn (n = 2). Although this geodesic is an approximation
to the real sequence, our experiments show that it is a good
approximation since AUs are simple and represented by short
sequences and the geodesic between the initial and end point
is almost the same as the curve connecting the intermediate
frames on the manifold.
In order to learn a template model for each AU on the

manifold, an important step is to parallel transport each
curve to a common tangent plane so that we can learn the
statistics of the set of vectors corresponding to an AU. As
we mentioned earlier, parallel transport on the manifold is
different from that of Euclidean space. Figure 7 compares
the results of parallel transport on the Euclidean space and
the manifold. The tangent vector from the sequence in the
first row is learned and then we parallel transport it to a
new face in the second and third rows. Before applying the
tangent vector, we affine transform the new face so that we
can better show the effect of parallel transport. As the figure
shows, parallel transport on the manifold generates the face
with the correct deformations while the corresponding result
on the Euclidean space is distorted. This again emphasizes
the importance of exploiting the shape-space geometry for
our problem.
The natural choice for the common tangent plane is the

one at the average of neutral faces on the manifold. For this
purpose, we calculate the Karcher mean for the neutral faces.
Then the velocity vectors corresponding to each AU, for the
Bosphorus database, is parallel transported to the mean point
and the Gaussian distribution is learned as the model for each
AU. It should be noted that in the Bosphorus database each
AU is represented using a tangent vector. Therefore, the final
model is the mean and standard deviation over the tangent
vectors at the mean neutral face.
Another method for learning an AU template model is

using dynamic time warping (DTW) on various sequences
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Fig. 7. Comparison between the results of parallel transport on the manifold versus that of Euclidean space. The first sequence (its tangent vector from
the leftmost to the rightmost shape) is parallel transported to the face on the second and third row, and the new sequence is synthesized on the manifold
(second row) and Euclidean space (third row).

corresponding to each AU [29]. Especially for the CK
database, since each AU is represented using a sequence of
projection matrices and since expressions occur at different
rates, it is necessary to time warp the sequences in order to
learn a rate-invariant model for them. Adapting the DTW
algorithm to the sequences that reside on a Riemannian
manifold is a straightforward task, since DTW can operate
with any measure of similarity between the different tem-
poral features. Here, we use the geodesic distance between
the projection matrices of different sequences as a distance
function and warp all the sequences (corresponding to an
AU) to a randomly selected sequence. Then the final model
for each AU is obtained by computing the Karcher mean of
all the warped sequences. This is a simple and fast approach
that works fairly well.
1) Action Units Recognition: Using the learned AU mod-

els for the Bosphorus and CK databases, we perform AU
recognition. We report the results on seventeen single AUs
in the Bosphorus database and nine single or combined AUs
in the CK database. The training samples are chosen as
images/sequences containing only the target AU occurring
in the corresponding local facial components (brow, eye,
nose, and mouth). In the Bosphorus database the lack of

Fig. 6. A sequence of facial expression is a curve on the Grassmann
manifold.

sufficient landmarks on the faces limits our recognition
capabilities. For example we cannot recognize the AU-43
since no landmarks are provided for the eyes. Also for the
CK database, since the sequences are mainly corresponding
to the expressions and not AUs, we only chose those AUs
for which enough training sequences are available. We divide
both databases into eight sections, each of which contains
images from different subjects. Each time, we use seven
sections for training and the remaining sections for testing
so that the training and testing sets are mutually exclusive.
The average recognition performance is computed on all the
sections.

For the Bosphorus database, we perform maximum like-
lihood (ML) recognition where we find the probability of
each test velocity vector comes from the learned Gaussian
distribution. But for the CK database, we first warp each
test sequence to the learned template using DTW and then
use the distance between the two sequences for recognition.
Figure 8 shows the confusion matrices for both databases. As
the results indicate, for the AUs that are mainly identified
by their facial deformations the recognition rate is high,
e.g. AU-2, AU-4, and AU-27. However, for AUs whose
distinction is more due to the appearance deformations than
the geometries, the algorithm may confuse them with the
AUs with similar geometries, e.g. AU-16 and AU-25. In these
cases, AUs occurring in other parts of the face can be used as
cues to remove the ambiguity and improve the recognition.

We also performed a recognition experiment using the
Bosphorus database on the Euclidean space, where the
normal parallel transport is performed before learning the
distributions. While the average recognition rate for AUs on
the Grassmann manifold is 83%, this value is 79% on the
Euclidean space. Although the recognition rate is improved
on the Grassmannian, but it is not considerable. A possible
reason can be the fact that in the Bosphorus database the
faces are almost always frontal and there are not significant
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Fig. 8. Confusion matrices for AU recognition on the Bosphorus (left) and CK (right) databases. LFAU and UFAU refer to the lower and upper face
AUs.

affine variations between the faces.

C. Basic Expression Recognition

To have a comparison with baseline results, we perform
the basic expression recognition using the CK database.
For this purpose, we manually label the sequences into
one of six basic expressions, namely, {Happy, Sad, Fear,
Surprised, Disgust, Angry} and then from each sequence we
select the last five frames. We apply the linear discriminant
analysis (LDA) and multi-class SVM to the training data
and perform leave-one-subject-out cross-validation over 89
subjects. Table I compares the results of applying LDA and
SVM to the normalized data in the Euclidean space as well
as subspace representations on the Grassmann manifold. For
the Grassmann data, we use the projection Grassmann kernel,
[30], to perform SVM as well as kernel LDA. The table
also shows the latest results reported by Cohn and Kanade
et al. [31]. However, it should be noted that these results
are reported on the extended Cohn-Kanade dataset (CK+)
which has more subjects and accurate expression coding. The
results show some improvements in using the geometry of the
Grassmannian over performing the analysis in the Euclidean
space. Although we see only modest improvements, but
as discussed before, while performing normalization in the
Euclidean space suffers from being arbitrary and thus is
highly sensitive to noise, the analysis on the Grassmann is
more stable and resilient to noise.

IV. CONCLUSION

This paper is a step toward breaking the dependence
of facial expression analysis systems to the choice of the
coordinate frame of the camera. We discussed that using the
equivalence class of shapes in a proper shape-space, one can
remove the need for a pre-processing step to align the data to

TABLE I

BASIC EXPRESSION RECOGNITION ON THE CK DATASET USING

ALGORITHMS ON BOTH EUCLIDEAN (E) AND GRASSMANN (G) SPACES.

THE LAST ROW SHOWS THE RESULTS ON CK+ DATASET.

Ha Sa Fe Su Di An Averaged

E-LDA 91.3 75.0 70.2 96.1 76.3 60.0 78.15
G-LDA 88.9 78.2 74.4 97.3 80.5 68.0 81.2
G-KLDA 95.1 85.7 83.0 98.6 86.8 65.7 85.8

E-SVM 91.3 80.3 74.4 97.2 78.9 62.8 80.8
G-SVM 95.0 85.7 74.5 97.2 78.9 65.7 82.8
SVM [31] 98.4 4.0 21.7 100.0 68.4 35.0 54.6

a common coordinate frame. While we claim that the projec-
tive shape-space is the proper space to model the facial vari-
ations, we have limited our discussions to the affine shape-
space since it is mathematically well understood compared to
the projective space. We showed that the affine shape-space
for our facial landmark configurations has Grassmannian
properties and therefore nonrigid facial deformations due
to various expressions can be represented as points on the
Grassmann manifold. By modeling the facial expressions on
this manifold we ensure that the variability being computed
is from shape changes only and not the coordinate frame.
We extended some of the available statistical algorithms for
facial expressions, e.g. ASM, nonlinear manifold learning,
and expression template learning, to the Grassmann manifold
and showed the benefits of this representation. It should
be noted that while similarity alignment in the Euclidean
space can remove the effect of camera coordinate frame to a
good extent, working with equivalence class of shapes in the
shapes-spaces is a systematic way of dealing with alignment
issue and the main benefits become more obvious when we
move to the projective shape-space.



APPENDIX

Here we present the solutions to some problems related to
traversing the Grassmann manifold which will be of use in
expression analysis.
P1: Find the geodesic between two points P1, P2 ∈ IP .

1. Let U ∈ Φ−1(P1) so that P1 = UQUT

2. Define P = UTP2U
3. Find X that takes Q to P .(using P2)
4. Find the geodesic between Q and P :

α(t) = exp(tX)Q exp(−tX)
5. Shift α(t) to P1 and P2 as:

α̃(t) = (U exp(tX)UT )P1(U exp(−tX)UT )
*** Here the sub-matrix A, where X = cdiag(A,−AT ), is

the velocity that takes P1 to P2 in unit time.

P2: Given P ∈ IP , find an X ∈ M such that α(1) =
exp(X)Q exp(−X) = P

1. Define B = Q− P
2. Find the eigen decomposition of B = WΣWT .
*** The eigenvalues of B are either 0’s or occur in pairs

of the form (λj ,−λj) where 0 < λj ≤ 1.
Then Qwj and Qwj′ are chosen to be positive
multiples of each other, where wj , wj′ are the
columns of W corresponding to the eigenvalues
λj and −λj . This is achieved by multiplying
wj by an appropriate unit number.

3. Set X = WΩWT ∈ M , where Ω is derived from Σ
by replacing all the 2× 2 blocks, diag(λj , λj′ ), by
cdiag(− sin−1(λj), sin

−1(λj)) and keep the rest
unchanged.

P3: Find P2 ∈ IP that is reached in unit time by following
a geodesic starting at P1 with velocity A.

1. Let U ∈ Φ−1(P1) so that P1 = UQUT

2. Form a skew-symmetric matrix X = cdiag(A,−AT )
3. Define V (t) = U exp(tX)UT

4. Then P2 = V (1)P1V (1)T

P4: Given P1 and the direction vector X ∈ M , find the
parallel transport of X to point P3.

1. Let U1 ∈ Φ−1(P1) so that P1 = U1QUT
1

1. Let U3 ∈ Φ−1(P3) so that P3 = U3QUT
3

2. Define V = U1exp(X)UT
1

3. Compute P4 = V P3V T

4. Having P3 and P4, the parallel transport of X to P3

is calculated using P1
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