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Abstract

Evaluation of tracking algorithms in the absence of ground truth is a challenging problem. There

exist a variety of approaches for this problem, ranging from formal model validation techniques to

heuristics that look for mismatches between track properties and the observed data. However, few of

these methods scale up to the task of visual tracking where the models are usually non-linear and

complex, and typically lie in a high dimensional space. Further, scenarios that cause track failures

and/or poor tracking performance are also quite diverse for the visual tracking problem. In this paper,

we propose an online performance evaluation strategy for tracking systems based on particle filters

using a time-reversed Markov chain. The keu intuition of our proposed methodology relies on the time-

reversible nature of physical motion exhibited by most objects, which in turn should be possessed by

a good tracker. In the presence of tracking failures due to occlusion, low SNR or modeling errors,

this reversible nature of the tracker is violated. We use this property for detection of track failures. To

evaluate the performance of the tracker at time instant t, we use the posterior of the tracking algorithm

to initialize a time-reversed Markov chain. We compute the posterior density of track parameters at

the starting time t = 0 by filtering back in time to the initial time instant. The distance between the

posterior density of the time-reversed chain (at t = 0) and the prior density used to initialize the tracking

algorithm forms the decision statistic for evaluation. It is observed that when the data is generated by

the underlying models, the decision statistic takes a low value. We provide a thorough experimental

analysis of the evaluation methodology. Specifically, we demonstrate the effectiveness of our approach

for tackling common challenges such as occlusion, pose and illumination changes and provide the

Receiver Operating Characteristic (ROC) curves. Finally, we also show the applicability of the core

ideas of the paper to other tracking algorithms such as the Kanade-Lucas-Tomasi (KLT) feature tracker

and the mean-shift tracker.

Index Terms

Performance Evaluation, Tracking, Particle Filters, Model Validation

I. INTRODUCTION

Visual tracking forms one of the most important components in a wide range of application

domains. Robust tracking of features form the primary input to classical vision problems such

as structure from motion and registration. In addition, tracking finds use in diverse application

areas such as surveillance, markerless motion capture and medical imaging. The need for robust

tracking algorithms that work over a broad spectrum of application domains cannot be under-
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stated. However, practical realities and the diverse nature of data dictates that even the most

sophisticated algorithm will have failure modes where the tracking performance is poor and the

algorithm loses track. In this paper, we address the problem of automatic evaluation of tracking

algorithms with the goal of detecting track failures and evaluation of tracking performance

without the need for ground truth.

There are multiple reasons why a self-evaluation framework is needed. Its most straightforward

use is in online characterization of tracking performance to enable a system to sanitize the tracker

output in the event of failure. Further, in the context of distributed sensor network, evaluation

of the performance of the tracking algorithm (associated with each modality) can be used to

characterize its reliability for the tasks of multi-modal fusion. Self-evaluation can also be used to

rank different tracking algorithms based on their performance. In this sense, self-evaluation can

be used to choose a tracking algorithm with better performance at run time. It also potentially

allows for tracking algorithms to tune their parameters to the specifics of an individual video

(as opposed to a training set, which may or may not capture the nuances of a single instance).

While ground truth allows the same, it is not self-contained to the tracking algorithm and is not

extensible easily.

There exist many evaluation schemes [1] [2] [3] that use ground-truth information to evaluate

tracking algorithms, and more importantly rank-order them in terms of performance. The PETS1

and CLEAR2 workshops, along with the ETISEO [4] effort focused mainly towards characterizing

algorithms in terms of performance in the presence of ground truth. The CAVAIR3 and the VACE4

efforts were geared towards evaluation of object detection and tracking [5], [6]. In addition to this,

there has been some research on distance metrics in matching the ground truth information to the

tracker outputs, and in tuning the parameters of the tracking algorithm [7]. However, collection of

ground truth is time consuming, and has its own variabilities [8]. Further, performance evaluation

using ground truth is not possible for real time field testing or on sequences which are unlabeled.

This motivates the need for online performance characterization in the absence of ground truth.

Evaluation of tracking performance and detection of track failure is similar to the problem of

1http://petsmetrics.net

2http://isl.ira.uka.de/clear07

3http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

4http://www.ic-arda.org/InfoExploit/vace/
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model validation, especially when the underlying formulation is in terms of dynamical systems.

Tracking performance is bound to deteriorate when the data violates the modeling assumptions

significantly. There exist many ways to detect the incompatibility between the models and the

observed data. For stochastic nonlinear systems, measurements based on the innovation error

forms a common choice as an evaluation metric. The statistics of the innovation error can be

cross-checked with those of the model (such as white Gaussian noise), and a hypothesis test can

be performed to determine model validity. Similar metrics such as the tracking error (TE) and

observation likelihood (OL), and their corresponding cumulative summations in time (CUSUM)

have been used for change detection and model validation [9]. TE and OL detect only sharp

changes which results in loss of track, and do not register slow changes. A statistic for detection

of slow changes called the negative expected log likelihood of state (ELL) and its generalization,

gELL are proposed in [9]. ELL is defined as a measure of inaccuracy between the posterior at

time t and the t-step ahead prediction of the prior state distribution. Interestingly, as we point

out later, the evaluation methodology proposed in this paper mirrors the ELL method in spirit.

In [10] [11] [12], under the hypothesis that the model is correct, a random process in the

scalar observation space is shown to be a realization of independent identically distributed

variables uniformly distributed on interval [0, 1]. This result holds for any time series and may

be used in statistical tests to determine the adequacy of the model. An extension to vector-valued

measurements is presented in [13], where a χ2-test for multi-dimensional uniform distribution is

used to determine if the system behaves consistently. However, when it comes to visual tracking,

as the observation could be in a very high-dimensional image space, the computation of the test

statistics is infeasible. In [14], an entropy based criterion is used to evaluate the statistical

characteristics of the tracked density function. The definition of good performance for tracking

a single object is that the posterior distribution is unimodal and of low variance. In contrast, a

multi-modal and a high variance distribution implies poor or lost tracking. In practice, tracking

in the presence of multiple targets and clutter does lead to the presence of multi-modality in the

target’s posterior density. This, however, does not necessarily imply poor tracking.

While model validation and change detection literature offers formal and rigorous approaches

to formulate the problem, in many cases, the underlying models for tracking are unable to

handle wide variations that occur in visual tracking. Further, given the complexity of the visual

information, it is virtually impossible to accurately model all the information in all its variabilities.
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Towards this end, there has been a body of research that exploits the inherent characteristics

of tracking output to automatically characterize the performance. In [15], Erdem et al. address

an on-line performance evaluation method for contour tracking. Metrics based on color and

motion differences along the boundary of the estimated object are used to localize regions where

segmentation results are of similar quality, and combined to provide a quantitative evaluation of

boundary segmentation and tracking. As an extension, [16] uses a feedback loop to adjust the

weights assigned to the features used for tracking and segmentation. This method of evaluation is

specific to contour-based tracking systems. Wu and Zheng present a method for self-evaluation

in [17]. This empirical method evaluates the trajectory complexity, motion smoothness, scale

constancy, shape and appearance similarity, combining each evaluation result to form a total

score of the tracking quality. However, this heuristic method can only be applied to a static

camera system.

In this paper, we propose an online evaluation methodology that can be applied to many

tracking algorithms to detect tracking failures and to evaluate tracking performance. The intuition

behind our algorithm lies in the reversibility of the physical motion exhibited by an object. In

many cases, this directly corresponds to time-reversibility of the models used in the formulation

of the tracking problem. When this tracking problem is defined in terms of dynamical systems

exhibiting Markovian properties, we construct a time-reversed Markov chain for the sole purpose

of evaluation. The posterior probability density of the time-reversed chain is propagated all the

way back to the initial time instant when the tracking algorithm is initialized. The prior used

to initialize the tracker is now compared to the posterior of the time-reversed chain to form the

evaluation statistic. For a well behaved system, the two probability distributions are expected

to show proximity in some statistical sense, with significant discrepancies between them in

the presence of tracking error. The proposed approach finds applicability in a host of tracking

algorithms that use a dynamical system formulation. In this regard, the use of particle filtering

for estimating inferences is very common given the non-linearity of most models and the non-

Gaussian noise distribution. The proposed evaluation method involves filtering back to the initial

time instant, and gets slower with increasing time. Hence, we also propose an approximation by

tracking back and comparing the performance against a point in time where by prior verification

we are confident that the performance is good. We analyze the performance of the evaluation

methodology by extensive experimentation over a wide variety of videos. It is shown that when
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ground truth is available, the track failures detected by our approach correlate significantly with

those validated by the ground truth. We also show the applicability of the core ideas for tracking

algorithms which are not modeled as dynamical systems. Examples of such algorithms include

the KLT feature tracker [18] [19] [20] and the mean-shift tracking algorithm [21] [22]. Finally,

we show that the proposed evaluation algorithm can be used for ranking different tracking

algorithms based on their performance. This paper is an expanded version of [23].

The paper is organized as follows. We give a brief overview of particle filtering and introduce

the terminology used in the paper in Section II. The proposed evaluation methodology and

its properties are discussed in Section III. In Section IV, we place the proposed algorithm

in the context of previous work on model validation and illustrate connections to other related

topics. Finally, we discuss the experimental results that validate the performance of the proposed

algorithm in section V.

II. VISUAL TRACKING USING PARTICLE FILTERS

In this section, we summarize the necessary background of Bayesian filtering methods used

in dynamical systems, in particular, the particle filtering method which is used widely in visual

tracking systems [24].

In particle filtering [25], we address the problem of Bayesian inference for dynamical systems.

Let xt ∈ R
d denote the state at time t, and yt ∈ R

p, the noisy observation at time t. We model the

state sequence {xt} as a Markovian random process. Further we assume that the observations

{yt} to be conditionally independent given the state sequence. Under these assumptions, the

models defining the system are given as follows: 1) p(xt|xt−1): The state transition probability

density function, describing the evolution of the system from time t − 1 to t; 2) p(yt|xt): the

observation likelihood density, describing the conditional likelihood of observation given state;

and 3) p(x0): the prior state probability at t = 0.

Given statistical descriptions of the models and noisy observations till time t,Yt = {y1, . . . , yt},

we would like to estimate the posterior density function πt = p(xt|Yt). Under Markovian assump-

tion on the state space dynamics and conditional independence assumption on the observation

model, the posterior probability is estimated recursively using the Bayes Theorem

πt =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)
∫

p(yt|xt)p(xt|y1:t−1)dxt−1

(1)
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Computation of p(xt|y1:t−1) is called the prediction step,

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2)

Equation 2 sets up the recursive step for estimation of the posterior at time t, πt from that at

time t − 1, πt−1.

πt =
p(yt|xt)

∫

p(xt|xt−1)πt−1dxt−1

p(yt|y1:t−1)
(3)

Note that, there are no unknowns in (3) since all terms are either specified or computable

from the posterior at the previous time step. The problem is that this computation need not have

an analytical representation. The particle filter approximates the posterior πt with a discrete set

of particles or samples {x
(i)
t }N

i=1 with associated weights {w
(i)
t }N

i=1 that are suitably normalized.

The set St = {x
(i)
t , w

(i)
t }N

i=1 is the weighted particle set that represents the posterior density

at time t, and is estimated recursively from St−1. The initial particle set S0 is obtained from

sampling the prior density π0 = p(x0).

A. Visual Tracking

In this subsection, we briefly discuss some of the common state space approaches to visual

tracking focusing in particular on the kind of motion and appearance models commonly used.

For rigid objects, most tracking algorithms formulate tracking over a state space that typically

comprises of locations on the image plane, the scale and orientation of the target all of which

can be re-parametrized as affine deformations of some basic shape. For non-rigid objects, the

affine deformation state could be extended to include contour deformation parameters (usually

encoded with splines or level sets). Finally, the state space may include components that relate

to the appearance of the target, so as to characterize and track the changes in target’s appearance

with changing pose and illumination.

The state transition model for the dynamical system is usually the motion model describing

the kinematics of the target. Depending on the requirements of the application, these could vary

from a simple Brownian motion model or a constant velocity model, to activity specific motion

models [26] when tracking complicated behaviors that have been learned a priori.

Finally, probably the most important component is the observation model, typically a character-

ization of the target’s appearance encoded either as a gray-scale or color template, or a histogram
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of such features. The key property of the observation model is that it provides discriminability

of target-specific features over background and other scene constructs. Further, the models are

expected to be fairly robust to outliers. Finally, there is the need for robustness to changes in

target pose and scene illumination. This can be achieved by explicitly modeling such pose and

illumination parameters in the state space of the system, or by having observation models that

are invariant (partially or otherwise) to such changes.

In this context, it is important to discuss the role of online appearance models for visual

tracking. In many practical systems (especially in surveillance), most targets are opportunistic,

with the tracking algorithm having no significant prior characterization of their appearance. In

such a scenario, the only identification of target appearance is in the initial frame provided

to the target, typically in the form of the prior density of the target. As the target moves in

the scene, online appearance models (OAMs) try to adapt to the changing appearance of the

target. However, the OAM needs to be updated in order to incorporate new features exhibited by

the target without introducing undesirable background artifacts that could potentially cause the

tracking algorithm to diverge. This results in two contradicting requirements for the adaptation

rules used to update the OAM. The need for updating the appearance models to account for

the changing appearance of the target is balanced by the possibility that undesirable background

artifacts might be introduced. Invariably, a strategy is chosen that balances these two effects.

This leads to scenarios in visual tracking, where the appearance models may no longer represent

the same object that was used in initialization. Hence, this leads to a case where the tracking

performance is poor not because of incompatibility between the models and the data (the premise

of model validation) or because of lack of smoothness and continuity of tracks (the premise of

heuristic works), but because the model characterizing the dynamical system are fundamentally

flawed due to undesirable updates.

In the next section, we outline our approach for performance evaluation, including detection of

error such as the one described above. The key point that we like to retain from the discussions

given above is the overwhelming role of the prior density in defining the target identity.

III. TIME REVERSIBILITY FOR EVALUATION

It is insightful to understand the challenges in visual tracking, and where some of the existing

tracking algorithms and evaluation schemes fail. We begin with a discussion of failure modalities

June 12, 2009 DRAFT



9

of tracking algorithms and the challenges for a self-evaluation scheme.

A. Failure modes of Tracking Algorithms

Visual tracking needs to be robust against a wide variety of operating conditions, dealing with

poor video resolution, occlusion, changes in pose and illumination, camera motion and clutter.

Under such diverse operating conditions, descriptions of objects, such as appearance, color,

shape and texture almost always change unpredictably. At the same time, motion consistency

is a feature that most algorithms use to reduce the search space, and it is one feature that is

frequently violated when the camera itself is moving.

The range of failures is even more enhanced when the tracking algorithm uses an adaptive

and online observation (appearance, shape) model. Adaptive appearance models are crucial

for achieving robustness to changing pose and illumination. However, there is almost always

the problem of incorporating undesirable features into the model, examples of which could be

features that correspond to the background. However, inspite of the large variations in operating

conditions, the identity encoded by the appearance and shape information at the initializing frame

provides a reference for validation. This forms the basis for the intuition behind the algorithm

proposed in this paper.

B. Intuition

Our goal is to provide a general, online evaluation method for visual tracking systems based

on dynamical systems. We will refer the Markov chain associated with the tracker algorithm as

the “forward” chain. The prior used to initialize the forward chain is the reference distribution

which we use to evaluate the performance of the tracking algorithm. In order to evaluate the

tracking performance at a time instant (say t = t0) we first need to account for the difference in

time instant between the prior (t = 0) and the output of the tracker. To achieve this, we construct

a time-reversed Markov chain with models that are similar to the forward chain. The key idea

is to compute the posterior distribution of this time reversed Markov chain at the initialization

time (t = 0) and compare it to the prior of the forward chain. For algorithms employing OAMs,

the identity of the target is defined in the initializing frame and the prior used to initialize the

system. This prior information encodes all the knowledge given to the tracking algorithm, and

arguably is most critical in determining the performance of the algorithm. In this sense, the

June 12, 2009 DRAFT



10

tracking performance can be determined by verifying the output of the tracker at any particular

time instant (say t = t0) against the prior with suitable time normalization.

From the point of view of information captured in the tracking algorithms, the underlying

intuition is that if, at time t, the tracker contains enough information about the target, then the

ability to track well until time t along the forward Markov chain implies that it is very likely

to be able to track back to the end along a time-reversed Markov chain equally well.

To get an intuitive understanding of the proposed algorithm, consider a video sequence in

which the first frame and the last frame are identical (in camera placement as well as the

location of every scene and object point). Good tracking performance would require a tracking

algorithm to localize the target in the last frame at the same location as the prior given in the

first frame. Such an idea is exploited for detecting drift in feature point tracking in [27]. Our

algorithm can be viewed as an extension of that idea for performance characterization.

C. Formalizing the Concept

The forward Markov chain describing the tracking algorithm is defined using the prior density

p(x0), the state model p(xt|xt−1) and the observation models p(yt|xt). At time T , given an

observation sequence YT = {y1, . . . , yT}, the posterior is πT = p(xT |YT ). To evaluate the

performance of the system, we propose a backward time tracker that uses πT as its prior and

the observation sequence YT in the time reversed order. Using the notation q(·) for probability

density functions associated with the time-reversed system, the reverse tracker is formulated as

follows. For evaluation at time T , the system is initialized at time T + 1 and filtered through

the observations YT .

• Prior at time T + 1:

q(xT+1) = p(xT+1|YT )

=
∫

p(xT+1|xT )p(xT |YT )dxT

(4)

• State Transition Model: For t ∈ (0, T ),

q(xt|xt+1) =
p(xt+1|xt)p(xt)

p(xt+1)
(5)

This can be directly computed from the models for most systems used to define the tracking

problem.
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• Observation Model: We retain the same observation model used in the forward model.

∀t, q(yt|xt) = p(yt|xt) (6)

With this characterization of the system, we can now filter the observation sequence Yb
T =

{yT , . . . , y1} in reverse time. The posterior density function of this filter is of great interest to

us. At time t, the posterior density πb
t = q(xt|Y

b
t ) = q(xt|yT , yT−1, . . . , yt).

We can now estimate the posterior density at time t = 0, πb
0 by recursion. From intuition, we

expect this density to be close in some statistical sense to the prior density p(x0). To this extent,

we postulate the following property.

Proposition: Suppose the reverse tracker is initialized with the prior q(xT+1) = p(xT+1),

then the posterior density of the time-reversed system at time t = 0 and the prior density p(x0)

are close to each other on distance metrics comparing the means of the corresponding random

variables, provided the underlying model completely fits the data.

Suppose we initialize the reversed time Markov chain using the density p(xT+1) as opposed to

p(xT+1|YT ). It is easy to verify that the final posterior distribution in the time-reversed process

is equal to the smoothing result [28] at the beginning of the forward process using all the

observations till time T , i.e, πb
0 = p(x0|y1,...,T ).

Now, πb
0 and the p(x0) are close in the sense that

∫

x0p(x0)dx0 =

∫

Yt

∫

x0

x0π
b
0dYtdx0 (7)

Suppose we compare E(x0) and EYt
(x0), then on an average (over the ensemble set of possible

observations) the two means will be the same.

It should be noted that the above result is true only when the reversed time system is initialized

with the prior p(xT+1). However, for most tracking models, it is the observation model with its

characterization of object appearance and/or shape that allows for discrimination of the object

from the background. In this sense, the observation model allows for accurate localization

(or equivalently, low variance estimation) of the target with the state model used mainly to

regularize and smoothen the result. Further, under the assumption that the data YT fits the

underlying models, the density p(xT+1|YT ) is expected to localize the target better, in the sense

of the sharpness of the density around its expected value. Hence, the system defined with prior

p(xT+1|YT ) is over-trained and provides a model that fits the data better.
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D. Evaluation Statistic

There exist distance metrics and measures for comparing density functions such as the Kullback-

Leibler (KL) divergence and the Bhattacharya distance [29]. However, in our case, the distri-

butions are represented by particles or samples from the density function. In general, given

the differences in the individual proposal densities and random number generators, the exact

locations at which the densities are sampled will be different. Computing the KL divergence

or the Bhattacharya distance for such non-overlapping sample sets would require interpolation

(using Parzen windows [29] ) or the use of approximations such as the Unscented Transformation

[30]. We circumvent this problem with the use of the Mahalanobis distance that depends only

on the moments of the distributions.

Denoting p as the prior distribution p(x0) and π as the posterior of the time reversed chain

q(x0|YT ), the distance d(p, π) between the two distributions can be computed as:

d(p, π) = (µp − µπ)T Σ−1
p (µp − µπ)+

(µp − µπ)T Σ−1
π (µp − µπ)

(8)

where µp and Σp are the mean and the covariance matrix of the distribution p and µπ and Σπ are

those of the distribution π, all of which can be easily computed or estimated from the particles

or in some cases, analytically.

An outline of the proposed evaluation framework is in Table I.

The proposed framework extends gracefully even to other dynamic systems where the inference

is not driven by particle filters. For example, if the system is linear Gaussian, then the posterior

can be computed using a Kalman filter. The time-reversed system is also linear Gaussian, and

its posterior can also be computed using a Kalman filter. In this case, the time-reversed posterior

and the prior can be compared using (8). Given the Gaussian nature of both distributions, as an

alternative similarity score, one could analytically compute their KL divergences too. It might

be possible to provide theoretical guarantees for the algorithm in this simple case. Finally, in

Section III-F, we show the applicability of the core idea for other tracking frameworks such as

the KLT and the Mean-Shift algorithms.
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TABLE I

OUTLINE OF THE PROPOSED EVALUATION ALGORITHM.

To evaluate the performance of the tracker at time T , the density πT is represented by the samples {x
(i)
t
}N

i=1,

1) Propagate the particles using p(xT+1|xT ) to get samples from p(xT+1|YT ),

x̃
(i)
T+1 ∼ p(xT+1|x

(i)
T

), i = 1, . . . , N (9)

2) Using the prior represented by the particle set {x̃(i)
T+1}

N

i=1, iterate the steps 3, 4 and 5 for t ∈ {T, T − 1, . . . , 1},

3) Proposition: At time t, propose a new particle set {x̃(i)
t
}N

i=1 using the state transition model,

x̃
(i)
t

∼ q(xt|x̃
(i)
t+1), i = 1, . . . , N (10)

4) Weight Computation: Compute the weight w
(i)
t

associated with the particle x̃
(i)
t

,

w
(i)
t

= q(yt|x
(i)
t

) (11)

5) Normalize the weights and resample them to obtain an unweighted particle set.

6) Using the particle set x̃
(i)
0 ∼ q(x̃0|YT ), compute mean µ̂π and covariance matrix Σ̂π using sample statistics.

7) The evaluation statistic is computed using (8).

E. Fast Approximation

The proposed evaluation framework poses a requirement to process (or track) across all the

frames seen by the tracking algorithm. For such an algorithm, the computational requirements

increase linearly with the number of frames (see Figure 1). This makes it increasingly harder

for the evaluation algorithm to satisfy real time constraints.

However, a set of sufficient (though not necessary) conditions can be designed to alleviate

this problem. We argue that if the performance at time T is good, then not only does the final

posterior match well with the prior density, but that the posterior densities of the forward and

reverse tracker should match at all intermediate time instants. A fast approximation is now

proposed using this observation. Suppose at time t0, the performance of the system is evaluated

to be good, then for an evaluation at a future time instant t′ > t0, the time t0 can be used

as a reference point in the place of the t = 0 (see Figure 2). Extending this concept, we can

recursively shift the reference point to keep a constant upper bound on the computational time
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Fig. 1. Schematic of the reference point used in the proposed algorithm. Evaluation of the performance of the tracker requires

validation with the prior density using a time reversed chain for suitable time normalization.

Fig. 2. Schematic of the reference point used in the faster approximation to the proposed algorithm. As opposed to the

implementation described in Figure 1, the approximation shifts the reference point from t = 0 to create multiple reference

points separated by time interval of ∆t = ∆. This keeps the overall computational requirements for the evaluation scheme

bounded.

for the evaluation. Let ∆t be the time interval between successive reference points, i.e, the time

instants t0 = 0, ∆t, 2∆t, 3∆, . . . , are used as the reference points. For a time instant t′, the

reference point chosen is ∆tbt′/∆tc. However, the suitability of the approximation depends on

the length ∆t. The trade-off here is between the computation time, which is proportional to ∆t

and the ability to detect slow changes that are of the order ∆t. A clever choice of ∆t can go a

long way in reducing the computational requirements of the proposed algorithm.

Finally, even with the approximation scheme described above, it might be difficult to achieve

real-time processing for the evaluation at every time instant. However, online evaluation in real

time is possible if we do not perform evaluation at every frame. For most practical systems,

evaluation needs to be performed at regular time intervals. Choosing a fast approximation scheme

with ∆t as the time difference between reference points as well as the time instants when
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evaluation is performed can go a long way in reducing the computing requirements for evaluation.

F. Extensions beyond particle filtering

1) Evaluations of the Kanade-Lucas-Tomasi tracker: The basic idea of the proposed evaluation

methodology can be used for tracking algorithms that do not use particle filtering. Here, we show

how to apply the evaluation method for feature point tracking using the algorithm [18] [19] [20].

KLT is among the most widely used feature point trackers for many systems and applications

and we use it for showcasing our evaluation algorithm.

The original KLT algorithm works under the assumption of brightness constancy and small

motion (typically, translation), that is, I(t,p) = I(t + 1,p + ∆p) where I(t,p) is the intensity

at pixel coordinate p = (x,y) in the frame at time t. Under this assumption a linear system in

∆p is solved to obtain the translation. In practice, the assumptions of brightness constancy and

small motion used in the derivation of the solution are almost always violated eventually, leading

to drift in the tracking of the feature point. In vision problems, especially those pertaining to

geometry (such as structure from motion and estimation of epipolar geometry, homography), the

presence of drift contributes to measurement errors which could subsequently be exaggerated by

the following estimation algorithms.

The proposed evaluation methodology provides an elegant way to evaluate the tracking perfor-

mance. As in the case of the particle filter, we formulate a KLT tracker for tracking back from the

current frame to the initial frame. On the one hand, if the assumptions of brightness constancy

and small motion are indeed satisfied and that the tracking remains stable and free of drift, the

KLT tracker is expected to work well both forward and in reverse. Brightness consistency as

a constraint is inherently time reversible and with sufficient smoothness on the function (I,x)

and its derivatives, it can be shown that the forward and time reversed systems behave similarly

under small motion assumptions.

On the other hand, in the presence of drift due to model failure, when we do the reversed

tracking, the tracker does not go back to the initialization point due to the unmodeled errors that

affect the tracking. Therefore, the strategy used earlier for evaluation of particle filtering-based

trackers along with the fast approximation techniques is also applicable to the KLT tracker.

Finally, the interested reader is referred to a feature point algorithm described in [31] that uses

this concept of time reversal for achieving robust tracking.
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Finally, KLT as a tracking algorithm is a point tracker and does not estimate uncertainty in

any specific form (such as density or covariances). We base our evaluation statistic on just the

Euclidean distance between the initial point provided to the tracker and the result of the time-

reversed KLT tracker. The Euclidean distance between the two points replaces the Mahalanobis

distance used for the Particle filtering scenario.

2) Evaluations of the Mean-Shift tracker: The proposed evaluation algorithm can also be

extended to the mean-shift tracker [21] [22]. The mean-shift tracker contains two major com-

ponents: target representation and localization. Histogram based appearance representation is

adopted for the target. Target localization is achieved through a mean-shift optimization process.

In mean-shift tracking algorithm, the target model is usually considered as centered at the spatial

location 0 and represented by its pdf q, which can be approximated by its m-bin histograms as

below:

target model: q̂ = q̂u, u = 1...m
m

∑

u=1

q̂u = 1 (12)

In practice, a target is usually represented by an ellipsoidal or rectangle region in the image.

With some manipulation, the probability of the feature u = 1...m in the target model can be

denoted by some analytical function of its location variables. In the subsequent frame, a target

candidate defined at location z is characterized by the pdf p(z):

target candidate: ẑ(y) = p̂u(z)u=1...m

m
∑

u=1

p̂u = 1 (13)

Similarly, we can compute the probability of the feature u = 1...m in the target candidate. In

[21] [22], Bhattacharya coefficient is adopted to evaluate the similarity likelihood between the

target model and candidate:

ρ̂(z) ≡ ρ[p̂(z), q̂] =
m

∑

u=1

√

p̂u(z)q̂u (14)

And the distance between target model and candidates can be defined as:

d(z) =
√

1 − ρ[p̂(z), q̂] (15)

To find the location of the target in the current frame is to minimize the distance measure

with respect to z. The Mean-shift tracker solves this minimization problem by the mean-shift

procedure after linearizing the Bhattacharya coefficient using a Taylor series expansion around

the location ẑ0 of the target in the previous frame. Hence, this algorithm works well when the
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target candidate p̂u(z)u=1...m does not change drastically from the initial p̂u(ẑ0)u=1...m, which is

often valid between consecutive frames.

The mean-shift tracker is popular due to its computational efficiency and ease of implemen-

tation. However, there are two major limitations that usually cause the traditional mean-shift

tracker to fail [32]. The first limitation is that the basic mean-shift procedure assumes that the

scale of the object remains unchanged during tracking, which may not be true in many real

cases. To handle scale change, it will bring uncertainty to the convergence of the tracker. The

second limitation is that the traditional mean-shift tracker uses radially symmetric kernels which

cannot adequately represent various object shapes. Therefore, like other tracking algorithms, the

traditional mean-shift tracker may also often encounter difficulties during tracking, which makes

it necessary to evaluate its performance in real time.

Based on the same idea we used for particle filter based trackers and the KLT tracker, we

evaluate the mean-shift tracker using the distance between the forward and backward tracker.

Here, the status of the tracking object can be characterized by the location ( assuming the scale

remains constant). Hence, simple Euclidean distance between the forward and backward kernel

modes which are found by the mean-shift method is used for evaluation.

IV. DISCUSSION

In this section, we discuss some of the properties of the evaluation algorithm. In particular

we highlight potential similarities between our algorithms and tools in existing literatures. For

example, ideas similar to time-reversal have been applied to the image registration problem

where it is desirable for the forward and the backward maps to be inverses of each other [33]

[34].

A. Similarity to the ELL

The proposed evaluation methodology is similar to the ELL statistic [9] in spirit, both involving

posterior of the tracking algorithm and the prior at time t = 0. ELL propagates the prior density

to time t and computes the inaccuracy between the t-step predicted prior and the posterior πt. In

contrast, the proposed methodology time reverses the posterior πt back to the initial time using

a time-reversed system and compares it against the prior at time t = 0. The main difference in

June 12, 2009 DRAFT



18

our formulation is the t-step reverse prediction is conditioned on the observed data, while the

t-step prediction in ELL is unconditional.

B. Time-reversed Markov chain

The main idea behind the evaluation methodology involves time-reversed models. The concept,

at a first glance, seems similar to time-reversible Markov chains [35]. Time-reversal is a concept

that is common to both the evaluation methodology as well as time-reversible chains. Time-

reversal produces a Markov chain whose state transition density is given in (5). However, time-

reversibility of a Markov chain is a stronger statement on the nature of the state transition density.

Specifically, the Markov chain is said to be time reversible when the so called detailed balance

property is satisfied, that is, there exists a probability density ps such that

p(xt = x1|xt−1 = x2)ps(x2) = p(xt−1 = x2|xt = x1)ps(x1) (16)

The proposed evaluation methodology does require a well conditioned model for the time

reversed Markov chain. However, it does not need the property of detailed balance to be satisfied

for the particular model. In this sense, the concept of time-reversible Markov chains and the

evaluation methodology proposed in this paper are completely different ideas.

C. Smoothing filter

In Bayesian smoothing algorithms, the quantity of interest is p(xt|y1:T ), the posterior of

the state conditioned on all observations y1:T , including those in the future. Computation of

these smoothing posteriors involves running a forward PF and a backward PF and fusing their

respective posteriors systematically [36]. However, in the smoothing algorithm, there are no new

constraints that are used, in the sense, that the dynamical system model (prior + state transition

+ observation models) is still the same. However, the proposed evaluation method depends on

this concept of time-reversibility of the physical models, which is a property that is extraneous

to the basic definition of the dynamical systems. In this regard, the concept of smoothing filters

and the evaluation methodology are two disparate concepts; it is possible to apply the evaluation

methodology to the smoothing filter.
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D. Failure Modes of the Proposed Algorithm

While the proposed evaluation algorithm works well across a wide range of tracking algorithms

(see Section V), there are some cases when it fails. Such failures vary with the selected tracking

model and the specifics of data. In particular, we discuss two cases where the evaluation algorithm

can potentially fail.

The first scenario deals with tracking algorithms that lock onto the initial position, thereby

losing track of a moving object. However, the time reversed tracker used for evaluation will

also remain locked at the initial position (of the forward tracker), and give low evaluation

scores, indicating a good tracking performance. This is clearly a failure mode of the evaluation

methodology, although for an unreasonable tracking algorithm. However, it highlights a potential
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Fig. 3. Performance evaluation over occlusion. Target is completely occluded by frame number 100. (Top left to bottom right)

Tracking results at frame numbers 1, 20, 40, 60, 80, 100, 120, 135 and 150 (Bottom row) Evaluation results using the proposed

algorithm (∆t = t) and its fast approximations (∆t = 5, 15, 30, 60).
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scenario where the evaluation methodology might fail.

A second instance of failure involve trackers that are completely guided by their motion model.

This could possibly happen due to observations being rejected as outliers by the observation

model, or in cases where a data association step associates a missing data state with the tracker.

In such a case, the time reversibility of the motion model (most commonly used motion models

are time reversible in the sense that the same model with different parameters can explain the

time reversed motion) would naturally guide the tracker back to its initial value.

A more realistic situation involves a combination of the two above-mentioned scenarios.

Consider an example, where a tracking algorithm loses an object in the initial few frames

of a video. For the remaining frames of the video, the output of the tracking algorithm is

unpredictable. However, without sufficient observations to guide the estimate, the state transition

model becomes the pre-dominant model in governing the evolution of the posterior density. For

tracking algorithms that use a Brownian motion model on the state transition, the mean of the

posterior does not change (and hence, remains close to the prior p(x0)). The evaluation score in

this case can possibly be of low value.

In short, the proposed method is very useful for many types of tracking problems; with certain

potential failure modes that can be detected using simple heuristics. It is also noteworthy that

the proposed evaluation might fail for a particular instance of data-algorithm pair, it does not

have a consistent failure mode (say such as occlusion or illumination).

V. EXPERIMENTS

In this section, we present experimental results of the proposed performance evaluation method

with particle filtering-based visual trackers, the Kanade-Lucas-Tomasi (KLT) and the mean-shift

tracker. We first show that the proposed evaluation algorithm can detect various common failure

modes in visual tracking systems using particle filters. We use the algorithm proposed in [37]

as the representative tracking algorithm for this set of experiments. This algorithm uses a six-

dimensional state space for capturing affine deformations, with a Brownian motion model for

the state dynamics. The observation model is a template based OAM, which is a specific mixture

of Gaussian model proposed in [38].
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A. Evaluation under common Tracking scenarios

Figure 3 shows results for a video where the target is completely occluded. We used our

evaluation algorithm once every 15 frames. The target undergoes occlusion around 100th frame.

The proposed statistic and its fast approximations register peaks or sharp rises in value around

this frame. It is noteworthy that evaluation using ∆t = 5 does not seem large enough to capture

the tracking failure. However, a higher value of ∆t registers the loss of track. Finally, as expected,

inference using fast approximations is not useful after a track failure is registered. This is because

that reference point against which the algorithm is being compared is corrupted.
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Fig. 4. Performance evaluation over slow pose change. (Top three rows) Tracking results at frame numbers 1, 40, 80, 120, 160

and 200 (Bottom rows) Evaluation results using the proposed algorithm (∆t = t) and its fast approximations (∆t = 5, 15, 30, 60).

Figure 4 shows the results of evaluation for a sequence in which a target exhibits a small

change in pose, easily tracked by the tracker. As expected, the proposed evaluation methodology

generates a test statistic which takes low values indicating a good tracking performance. Figure

5 shows evaluation results on an aerial sequence in which the tracker loses track of the target

due to the jerky motion of the camera. The test statistics registers sharp peaks around the point
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where the loss of track happens.
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Fig. 5. Performance evaluation in an aerial sequence. The tracker loses track of the object around frame 110 due to jerky

camera motion. (Top three rows) Tracking results at frame numbers 1, 20, 40, 60, 80, 100, 120, 140 and 160. The true target

location is marked in red after the algorithm loses track. (Bottom row) Evaluation results using the proposed algorithm (∆t = t),

its fast approximations and the KL divergence between prior density and posterior of time reversed chain.

The proposed algorithm was tested on sequences in the PETS-2001 data set and the evaluation

is compared with the ground truth. The comparison with the ground truth is done by computing

the distance between the center of the target as hypothesized by the tracker to the ground truth.

Figures 6 and 7 show the results on two sequences from the dataset. In Figure 6, the tracker

tracks the object fairly well. Both the proposed statistic and the comparison against the ground

truth take a low value. Figure 7 shows the evaluation results for a scenario involving tracking

failure. While all statistics register the failure of track, the proposed statistic registers the track

failure before the ground truth. This is because of the specific evaluation criterion used with the

ground truth, which involves comparing only the centers of the target, while the bounding box
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is inaccurate before the loss of track (frame 60).
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Fig. 6. Performance evaluation on a PETS sequence including ground truth. (Top three rows) Tracking results at frame numbers

1, 30, 60, 90, 120 and 160. (bottom three rows) Evaluation results using proposed statistics and its fast approximations and

the ground truth. Tracking performance remains fairly constant as shown by both the ground truth and the proposed evaluation

strategy.

B. Receiver Operating Characteristic

To further give a statistical evaluation of the proposed evaluation method, we organized a data

set containing 40 sequences obtained from various scenarios, like outdoor/indoor, vehicle/human,

optical/infrared, static/moving camera, ground/airborne, etc. These video sequences were each

obtained from standard video datasets such as the PETS 2001, 2002 dataset, the aerial sequences

from the VIVID dataset, the TSA dataset and other videos collected at the University of Mary-

land. Each sequence composes of 200 frames. The first frames of each sequence are shown in

Figure 8.

Ground truth for each video was obtained manually, and comprises of a tight bounding box

(parallelogram) around the target at frames 1, 20, 40, . . . , 200. A detection event corresponds to
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Fig. 7. Performance evaluation for a PETS sequence including ground truth. (Top three rows) Tracking results at frame numbers

1, 20, 40, 60, 80, 100, 120, 140 and 160. The true target location is marked in red after the algorithm loses track. (bottom three

rows) Evaluation results using proposed statistics and its fast approximations and the ground truth.

detecting the failure of the tracking algorithm. The true state of nature is obtained by using

the spatial overlap between the ground truth and the region assigned as the target by the MAP

estimate of the tracking algorithm. A low overlap between the two confirms that the tracking

performance is poor, and is denoted as a detection of failure.

After obtaining the evaluation statistic values, we vary a threshold to get different detection

and false alarm rates and plot the ROC curve. We plot operating curves under various operating

scenarios.

1) Length of the Video: We performed experiments characterizing the performance of the

evaluation algorithm as the length of the video increases. This is to quantify the possible small

degradation of performance as the length of the video increases. Figure 9 shows the ROC curves
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Fig. 8. The collected data set for obtaining ROC curve of the proposed evaluation method.
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Fig. 9. We characterize the performance of evaluation as the length of the video (number of frames) changes. The encircled

points are the (Bayesian operating points) for equi-prior, and 0 − 1 cost structure.

for videos of length l = (20, 60, 100, 200) frames. Also marked are the Bayes’ operating point

for equi-prior and 0 − 1 cost structure. This allows us to get a quantitative assessment of the
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Fig. 10. The ROC curves of the proposed evaluation method with OAM-based particle filtering. The evaluation was performed

at the final frame of a 200 frame long video. Each line corresponds to a fast approximation scheme with different approximation

length. Note that performance does not degrade much between the basic evaluation strategy ∆t = 200 and an approximation

∆t = 100.
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Fig. 11. The performance comparisons of the proposed evaluation method between OAM-PF tracker and FAM-PF tracker. The

evaluation performance remains fairly same over two different tracking algorithms hinting at the robustness of the evaluation

strategy over different tracking algorithms.
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Fig. 12. The performance comparisons of the proposed evaluation method by using Mahalanobis distance and KL divergence

based evaluation statistics respectively. Evaluation performance seems fairly similar under either metric. This could possibly hint

at the unimodality of the densities around the prior time instant t = 0. The similarity in evaluation justifies the use of the faster

Mahalanobis distance in the place of the KL divergence which is expensive to compute for point clouds.

Bayes risk and its degradation as the length of the video increases.

Length of the Video 20 60 100 200

Bayes Risk 0.12 0.1 0.18 0.21

TABLE II

THE BAYES RISK OF THE EVALUATION ALGORITHM.

This allows us to interpret the ROC curves better. For example, at l = 60 the detection

probability is PD = 0.94 at a false alarm probability PF = 0.13, which falls to PD = 0.73 when

l = 200 (same the same false alarm rate PF ).

2) Fast Approximation: We next show the differences in performance between the basic

evaluation method and its fast approximations at various ∆t. The curves in Figure 10 show ROC

for evaluation at the last frame of the video (at t = 200) using the basic algorithm (∆t = 200)

and fast approximations at ∆t = 20, 40, 100. Note that in the fast approximation method, if an

intermediate point is declared as a track failure, then all subsequent points are also declared as

track failures. This contributes to the poor performance at ∆t = 20. It is seen from the figure that

with appropriate intervals, like 100 frames, the performance of the fast approximation strategy
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is comparable to the basic framework, while keeping the computation time constant.

3) Tracking Algorithm: We ran the evaluation method for particle filter-based tracking algo-

rithms based on the OAM and a fixed appearance model (FAM). We show both the ROC curves

in Figure 11. The test data set is the same for both trackers, while the evaluation performance

is different by a small margin. Further, a comparison with the ROC curves in the evaluations of

the KLT and mean-shift trackers (shown in Figures 16 and 14) suggests that the performance

of the evaluation method may reveal some characteristics of the underlying tracking algorithm.

We plan to explore this as a part of future work.

4) Choice of Evaluation Metric: In computing the evaluation statistic, we proposed to use

Mahalanobis distance in place of distances such as the KL divergence which compares two

densities directly. To test the effectiveness of this Mahalanbois metric, we also computed the KL

divergence-based distance when using the basic framework where the computation is feasible

given the Gaussian prior distribution. The comparisons in Figure 12 show that there is no

significant difference between using the Mahalanobis distance and the KL divergence in our

experiments. This could possibly be due to the unimodality of the densities around the prior

time instant t = 0. The similarity in evaluation justifies the use of the faster Mahalanobis

distance in the place of the KL divergence which is expensive to compute for point clouds.

5) Evaluation of Mean Shift Tracker: Using the same data set as used for the particle filtering-

based tracker evaluation, we tested the evaluation algorithm on the traditional mean-shift tracker.

By excluding some sequences where the traditional mean-shift tracker completely fails from the

very beginning, which makes the evaluation completely unreliable as we discussed in the above

section, the final test set contains 26 sequences and 260 evaluation points in total. Figure 13

shows the evaluation results for a sequence with slow tracking drift. The corresponding evaluation

score for this sequence increases indicating the increasing drift in tracking. We use the same

ground truth as in the particle filtering case. The true state of the track (failure or not) was

determined by comparing the hypothesized region to the ground truth. Lack of sufficient overlap

between the two was labeled as a failed tracker. The evaluation metric was designed based on the

distance between the output of the time-reversed mean-shift and the initial guess. The Euclidean

distance between the two was used (as the scale of the tracker remains fixed, which makes

the Euclidean distance almost equivalent to spatial overlap). As before, we computed the ROC

curve using the dataset of 26 sequences (see Figure 14) show-casing the performance of the
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Fig. 13. Performance evaluation for a sequence tracked by the mean shift tracker with slow tracking drift. (Top three rows)

Tracking results at frame numbers 20, 40, 60, 100, 120, 140, 160, 180 and 200. (bottom) Evaluation results using the proposed

statistics under the basic mode.

evaluation method for the Mean Shift tracker. We designed this work based on the code from

http://www.cs.bilkent.edu.tr/ ismaila/MUSCLE/MSTracker.htm.

6) Evaluation of KLT Feature Tracker: We also tried to use the proposed method to detect the

tracking failures of the KLT feature tracker. The KLT is a feature point tracking algorithm and

hence, we can generate multiple test cases from a single image. For our experiments, we used

four images, and selected 200 features per image using the KL feature selection criterion (see

Figure 15). Selecting 200 features per image gives us a mix of good and bad feature points (in

terms of their tractability). We create a synthetic sequence by translating the images. This gives

us the ground truth for the sequence. A feature point is considered to have drifted if it diverges

by more than 2 pixels from the ground truth. As before, we use ROC curves to characterize

the detection of drift using our evaluation methodology. The ROC curve in Figure 16 indicates

that the evaluation method works very well for the KLT tracker. We also show some detection

results in Figure 16.
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Fig. 14. Evaluation results for the mean shift tracking algorithm over a dataset of 26 videos snapshots from whom are shown

in the left-image. The ROC curve of the evaluation algorithm for the tracker using the basic mode. From 26 videos of 200

frames each, we obtained 260 evaluation points which were used to generate the ROC curves.

Fig. 15. Test images used for the KLT tracking algorithm overlaid with the selected feature points. Each image was translated

to create a synthetic video providing ground truth for evaluation.

C. Ranking the Performance of Trackers

We have showed above that the proposed online evaluation algorithm can detect tracking

failures in the absence of ground truth data. In addition to this, the proposed algorithm can also

be used to compare the performance of different trackers. We compared the performances of the

three trackers we used in this paper: the particle filter based tracker with OAM, the particle filter

based tracker with FAM and the mean-shift tracker. Since the KLT tracker is a feature tracking

algorithm and requires a different test set, we did not include it in this ranking experiment.

The experiment was performed as follows. For each tracker, we count the number of tracking

failures reported at different false alarm rates over the data set shown in Figure 14. For each

tracker, we have 260 evaluation points (26 sequences, with 10 evaluation points each). We can
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Fig. 16. Performance of the evaluation method for the KLT feature point tracking algorithm. (Top left column) The initial

frame and the enlarged details for KLT tracking. The red dot shows the initialization of the KLT tracker and the green plus sign

shows the ground truth. (Top right column) The final frame and its enlarged details for KLT tracking. As we can see, many

tracking feature points (red dot) have drifted away from their ground truth locations (green plus sign) and been detected by the

evaluation algorithm (the blue circles indicate the drifted points which are connected with their ground truth locations by blue

line). (Bottom) The ROC Curve of the evaluation method for KLT tracker using 4 images and 800 feature points.

see from the figure that at a false alarm rate of 0.6, the detection rates for all three trackers are

very close, therefore we can compare the performance of each tracker in terms of the number

of detected tracking failures at this point. Intuitively, a tracking algorithm with more detected

track failure should correspond to a poorer tracking performance. From the figure, the ranking
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order for the three trackers we used here results in (PF tracker with FAM) < (PF tracker with

OAM) < (Mean-shift tracker), from left to right, worst to best performance. Notice that:

Dbad = Gbad ∗ Detection Rate + Ggood ∗ False Alarm Rate

Gbad + Ggood = Total number of evaluation points
(17)

where Dbad is the detected number of failures, Gbad is the real number of failures ( ground

truth).

With the help of the ROC curves of the proposed evaluation algorithm together with the

number of detected failures, we can recover the ground truth number of tracking failures. The

results are: 152 (PF tracker with FAM), 90 (PF tracker with OAM) and 66 (Mean-shift tracker).

As we can see, the ground truth ranking result of these three trackers gives the same ordering

as the proposed evaluation algorithm.

It is noteworthy that the above comparison is valid only because that the detection rates for

the tracking algorithms are similar at the false alarm rate of 0.6. At a different operating point

where the detection rates are not similar (for the same false alarm) such a comparison becomes

invalid as the tracking with a higher detection rate tends to report larger number of detected

failures.

D. Summary

To summarize the results, the following properties of the proposed evaluation scheme are

highlighted. The proposed evaluation algorithm is shown to detect common failure modes in

visual tracking and also compares favorably with ground truth based evaluation. The value of

∆t is shown to be critical in the efficiency of the fast approximations. A value of ∆t = 40, 60

seems reasonably large enough to register failures. It should be noted that fast approximations

are meaningless after detection of failure, as the reference point against which they are compared

does not correspond to good tracking. The choice of threshold to declare poor performance can

be decided for a specific tracking system by inspection from the ROC curve. The choice is also

influenced by the value of ∆t. It can be seen that for all the experiments in this paper, the

inference from the proposed evaluation agrees well with subjective evaluation of track failures.

The supplemental material includes videos showcasing the working of the evaluation algorithm.
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Fig. 17. The ranking result of the three trackers: the particle filter based tracker with OAM and FAM, the Mean-shift tracker.

The above is the corresponding ROC curve of each tracker on the data set described in Figure 14. The bottom plot is the number

of detected failures (the number is in percentage) using the proposed evaluation algorithm for each tracker at different false

alarm rates.

VI. CONCLUSION

In this paper, we present a method to provide automatic and online evaluation of the tracking

performance in visual systems without the knowledge of ground truth. The proposed evaluation

algorithm works by verifying the prior at time t = 0 against the posterior of a time-reversed

chain. The time-reversed chain is initialized using the posterior of the tracking algorithm. We

characterize the performance of the algorithm using ROCs under various operating conditions.

While the focus in the paper has been on systems using particle filtering, the evaluation method

is fairly independent of the tracking algorithms used. In this regard, we show that the algorithm

works well for other tracking approaches such as the KLT and the mean shift tracker. We also

show that the evaluation methodology can also be used to rank different tracking algorithms

according to their performance. We envision the use of the evaluation methodologies proposed

in this paper for online verification and ranking of tracking performance. Future directions of
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research include tracking algorithms that optimize the evaluation metric so as to minimize the

chances of track failure.
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