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ABSTRACT

Even though numerous algorithms exist for estimating the struc-
ture of a scene from its video, the solutions obtained are often of
unacceptable quality. To overcome some of the deficiencies, many
application systems rely on processing more information than nec-
essary with the hope that the redundancy will help improve the
quality. This raises the question about how the accuracy of the
solution is related to the amount of information processed by the
algorithm. Can we define the accuracy of the solution precisely
enough that we automatically recognize situations where the qual-
ity of the data is so bad that even a large number of additional ob-
servations will not yield the desired solution? This paper proposes
an information theoretic criterion for evaluating the quality of a 3D
reconstruction in terms of the statistics of the observed parameters
(i.e. the image correspondences). The accuracy of the reconstruc-
tion is judged by considering the change in mutual information (or
equivalently the conditional differential entropy) between a scene
and its reconstructions and its effectiveness is shown through sim-
ulations.

1. INTRODUCTION

Obtaining accurate 3D models from video using the structure from
motion (SfM) approach [1], [2], is extremely important because of
its diverse applications, ranging from multimedia to medical di-
agnosis. Yet the quality of many of the automatic 3D reconstruc-
tions leave much to be desired. This has led many researchers to
analyze the sensitivity, robustness and statistical error characteri-
zation of the existing algorithms, trying to understand algorithm
behavior and the characteristics of the natural phenomenon that is
being modeled [3], [4], [5], [6], [7], [8], [9]. To overcome these
errors, the tendency has been to add redundancy in the information
processed. This raises the question as to how the redundant infor-
mation affects the quality of the final solution. In this paper, we
consider the situation where multiple reconstructions of the same
scene are available (called intermediate or individual reconstruc-
tions, in this paper), that are combined together to obtain the final
estimate (Figure (1)). We compute the incremental mutual infor-
mation between the unknown 3D structure and increasing numbers
of intermediate reconstructions.

Before proceeding to give a detailed description of the idea, we
would like to draw the attention of the reader briefly to the area of
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Fig. 1. Block diagram representation of the reconstruction framework. �
is the inverse depth that we want to estimate, �������
	��������������	�	 are the
intermediate reconstructions (e.g. from each individual camera), and �� is
the final fused estimate.

model selection in statistics (AIC, BIC, MDL etc. [10]). The idea
of fitting models to geometric data was formalized by Kanatani
using a Geometric Information Criterion (GIC) [11]. However,
a large number of SfM algorithms are not model based; they re-
construct individual point features of the scene. Our work tries to
define the quality of reconstruction from point features in informa-
tion theoretic terms.

2. AN INFORMATION THEORETIC CRITERION FOR
3D RECONSTRUCTION

2.1. Problem Formulation

We assume that all the depth values are aligned to a common
frame of reference. Feature points will be represented by sub-
scripts, separate reconstructions will be within parenthesis. The
vector of estimates of the inverse depth 1 � ���������
� �!�"�"�������$#%��&(' will
be denoted by )+*!,.-� . The boldface notation ) �0/�� will represent

all the features in the / th reconstruction. The final estimate 12
of

243 � 5�67�8�"�"�"�
5�9:& ' is obtained by fusing the individual recon-
structions � ) ���7�
�7�!�"�"� ) �$;.��� . To keep the notation simple, the sub-
script for the feature point will not be mentioned, unless required.
We assume that 5 is Gaussian with zero mean and variance <>=? .

1The inverse depth is used throughout this paper since it is the quantity
that is estimated from the SfM equations for reconstruction from a video
and its statistics can be obtained in an analytic form more easily than for
the depth.



The individual estimates are modeled as

� �0/�� 3 5 ��� �0/�� (1)

where 5���� �	� � < =? 3�
� � and � � �0/��
��/ 3 � �7�!�"�"��#�� is a se-
quence of independent random variables distributed as � �	� � < =� * � - � .
Let


 � 3
diag � 
 � �0/ ��& ���>6�� � � � � , 3

diag ��< =� * 6 - � �!�"�"� <�=� *", -
�

2.

2.2. Main Result

We will now present an information theoretic measure for eval-
uating the quality of a 3D reconstruction algortihm by analyzing
the contribution of each of the individual reconstructions. Our en-
tire analysis is for a particular point and thus the subscript will be
dropped, unless required for clarity. From (1), � � � �0/���& 3 � and� � � �0/���� ��� ��& 3 � �"�05 ��� �0/���� �05 ��� ��� ����&3 
 � � 
 � �0/����7� � � (2)

where �7� � is a Kronecker delta function. Thus the covariance of
) *", - is


 )! �"$# 3%
 *!, -� �'& , 
� &)( , , where
& , is a vector of #

ones. Then the mutual information between 5 and � �0/�� ,* �05,+�� �0/���� 3 - �$� �0/����/. - �$� �0/��10 5 �
3 �243�57698 � � 
 �
 � �0/��;: � (3)

Next, consider the mutual information between the unknown 5
and the vector of observations ) *!,.- . We will denote by 0 <=0 the
determinant of a matrix < .* �05,+ ) *!, - � 3 - � ) *!, - �/. - � ) *!,.- 0 5 �

*?>7-3 - � ) *!, - �/. ,@
�A� 6 6

= 3B576 � 2DCE 
 � �0/����

*BF -3 6
= 3�576 8 0 
 � �%& , 
� & ( , 00 
 � 0 : � (4)

(a) is a result of applying the chain rule of entropy and substituting
the expression for the differential entropy of a Gaussian random
variable [12]; (b) is due to the fact that 0 
 � 0 3HG ,���>6 
 � �0/ � 3G ,�A� 6 <�=� * � - . Using the method of induction and the properties of

determinants, it can be shown that 0 
 � �I& , 
� & ( , 0 3JG ,�A� 6 < =� * � - �< =?LK ,�A� 6 G ,MONQP�;R� � < =� * � - . Then from (4), the expression for the mu-

tual information becomes* �05S+ ) *!,.- � 3 6
= 3B5;6UT � � ,@

�A� 6 < =�< =� * � -DV � (5)

Let us compute the difference in the mutual information for the
two sets of observations, ) *!, - and ) *",XW 6 - . We shall call this the

2Where necessary to distinguish a particular feature point, we will use
the notation Y =? M and Z � M �A[$	 or Y =� M * � - for the \ th point.

incremental mutual information, ] * . Thus,] * 3 * �05S+ ) *!,.- �/. * �05,+ ) *!,XW 6 - �
3 6

= 3B5;6 8 0 
 �  B"$# �^& , 
� & ( , 00 
 �  B"L_ P # �%& ,`W 6 
 � & ( ,XW 6 0 � 0 
 �  B"L_ P # 00 
 �  B"$# 0I:
3 6

= 3B5;6,abc G ,���>6 < =� * � - � < =?dK ,��� 6 G ,M�NeP�;R� � < =� * � -G ,��� 6 < =� * � - � < =? K ,XW 6�A� 6 G ,MONeP�7R� � < =� * � -
fhgi

3 6
= 3B5;6 ac � � �kj < =� *!,.-6lnmo � K ,XW 6���>6 6l mp  ?qA#

fi
3 6

= 3B5;6UT � � �kj 
 � �$#%�6lnmo � K ,`W 6���>6 6r p * � - V � (6)

Equation (6) gives us a measure of the extra information that would
be obtained by including an additional observation into the fusion
process. Also, since* �05,+ ) *", - �/. * �05,+ ) *!,`W 6 - � 3%- �05=0 ) *!,`W 6 - �/. - �05=0 ) *!, - �
�

(7)
the quantity defined as the incremental mutual information can
also be referred to as the incremental conditional entropy. Thus
we are measuring the reduction in the uncertainty of the solution
as we consider an extra observation. The difference in the differ-
ential entropy determines the decrease in the coding length of the
scene structure as the number of observations increases [12].

The above calculation requires computing the variances of the
intermediate reconstructions. Any method to compute them is per-
fectly suitable. In an earlier work [13], we have shown how to do
this for the case of 3D reconstruction using optical flow. It should
be remembered that all the geometric quantities have to be with re-
spect to a particular frame of reference; hence it may be necessary
to transform the variances appropriately.

An Estimation Theoretic Interpretation: We will now present an
alternative interpretation of the result in (6) from an estimation
theoretic perspective. The mean squared distortion is defined ass � 2 � 12 � 3 �t 9@�u� 6 � �!�05v�w. 15v� � = &$� (8)

Let x �05v� � �v� ���7�
�7�!�"�"���4� �$#%��� denote the joint density function of
the parameter and observations. The mean square error estima-

tor 15 � of 5 � , obtained from ) *!,.- , is 15 � �$# � 3 ��y 5 � 0 � *!, -�{z .
From the Cramer-Rao lower bound (CRLB) we can write the fol-
lowing set of inequalities.s | �t 9@�u� 6 �� y .~} m} � m 3�576x �05v� ���4� ���7�
�7�"�!�"���4� �$#%��� z

3 �t 9@�u� 6 �6lnmo M � K ,�A� 6 ��y . } m} � m 3�576x �$� � �0/��10 5 � z| �
69 K 9�u� 6 8 6lnmo M � K ,��� 6 6r p M * � - :�3 �69 K 9�u� 6 6� M *!,.-

� (9)



The last step is a result of the application of Jensen’s inequal-

ity [14] and the fact that � y .H} m} � m 3B5;6 x �$� � �0/��10 5%� z 3 6r p M * � - .
Recalling that (6) is for a particular feature point where the sub-
script has been suppressed for clarity of notation, let us denote] * � �3 * �05v� + ) *!, -� �e. * �054�;+ ) *!,XW 6 -� � . Then from (9) and the last
expression of (6), we get] * � 3 6

= 3B5;6 8 s � �$# . ���s � �$#%� : � (10)

Alternatively, the innovations at the # th stage, � , 3 5 , . 15 , .
Then following the standard derivation for the Kalman filter [14],
it can be shown that variance of the innovations
�� " 3 < =� *", - ac � � �kj <�=� *", -6lnmo � K ,`W 6���>6 6l mp  ?qA# fi � (11)

which shows that, for each feature point, the incremental mutual
information is related to


�� " as] * 3 6
= 3B5;6 T 
 � "< =� *!, - V � (12)

These relationships provide an alternative estimation theoretic in-
terpretation to our result. Taken together (6), (10) and (12) demon-
strate the use of statistical evaluation techniques to the SfM prob-
lem, when it is suitably formulated.

3. ANALYSIS AND EXPERIMENTS

3.1. Analysis:

Present methods to evaluate the quality of a reconstruction involve
computing the distortion in (8). For a fusion algorithm, this means
that we need to compute (8) at every stage of the fusion and decide
when to stop. This is computationally intensive, distortion mea-
sures are not always very useful in practical experiments since the
choice of an acceptable threshold if often arbitrary and the source
of the error (whether in the intermediate reconstructions or in the
fusion algorithm) is difficult to identify. In our approach, (6) gives
a direct way to measure the contribution of the intermediate solu-
tions and the accuracy of the final solution as the algorithm pro-
gresses. The statistics of the error can be computed using the SfM
equations and its solutions, as described in [13]. If the solution is
far from its desired values, the error would be larger than if the so-
lution is close to its true value. When the error in the intermediate
reconstructions is small,

s � is small and hence the difference in
the mutual information is small. Ideally, this difference should go
to zero as we include more and more observations. If the error is
large,

s � would be large and ] * � would not decrease appreciably
with the number of observations. Another salient feature of our
method is that we measure the information content between the
true structure and the reconstructions before the fusion. This al-
lows us to understand the source of the error better since the effect
of intermediate reconstructions and fusion algorithm are separated.

One scenario where this idea can be applied is reconstruc-
tion from a video sequence where intermediate reconstructions,) ���7�
�8�"�"�!� ) �$;.� , obtained from a few frames (two or three) are

combined together. Another application would be where partial re-
constructions have been obtained from multiple cameras 3. These
partial models would have common overlapping regions which can
be combined together to form the single estimate. In this case,) ���7�
�7�!�"�"� ) �$;.� would represent these common sub-regions from; separate reconstructions.

The statistical assumptions of independence and Gaussianity
are necessary in order to derive closed form expressions for the
quantities of interest. The independence of the intermediate esti-
mates � �����
� �"�"�"��� �$; � may be valid when these are obtained from
separate imaging systems and then combined. When the same
camera is used, the intermediate reconstructions should be ob-
tained with non-overlapping frames; otherwise the common frames
increase the dependencies. Regarding the Gaussianity assump-
tions, it has been pointed out by Zhang in [7] that the correspon-
dence errors in SfM are usually normally distributed, if we can get
rid of the outliers in the matches.

3.2. Experiments:

Experiment 1: A set of 3D points were generated so that we know
their true positions. The perspective projections of these points
were generated and Gaussian noise with zero mean and known
variance was added to these 2D locations. The projections were
taken for different positions of the camera, so that in the end a set
of tracked features was obtained. From every pair of such tracked
features, the positions of the original 3D points were estimated,
which results in a set of 3D reconstructions. The first plot of Fig-
ure (2) shows the true value of the 3D points and their estimated
reconstruction from all the frames over which the features could
be tracked. 4 The second diagram in Figure (2) plots the decrease
in the incremental mutual information with the increasing number
of intermediate reconstructions.
Experiment 2: As in the previous simulation, a set of features were
tracked over a number of frames. However, the level of noise
added to the feature positions was higher and it led to a mismatch
of some of the features. The 3D positions of the points were esti-
mated using the SfM algorithm and the results were erroneous as
is clear from the first plot of Figure (3). The second plot of Figure
(3) depicts this case where the incremental mutual information re-
mains large and does not follow any trend.

Experiment 3: We will now present our result on a real video se-
quence. The video consists of a person moving his head in front of
a static camera. The aim was to reconstruct the model of the head
of the person from this video. The focal length of the camera was
known. Figure (4)(a) represents an image from the video along
with some of the feature points which were tracked. Figure (4)(b)
represents the change in the incremental mutual information be-
tween the unknown 3D structure and the intermediate reconstruc-
tions from every pair of frames. Based on this measure, the 3D
model was reconstructed using 25 frames and Figure (4)(c) shows
one particular view of this model.

3This is the set-up in the “Eye Vision” technology devel-
oped by Carnegie Mellon University (CMU) and CBS Television
(http://www.ri.cmu.edu/events/sb35/tksuperbowl.html).

4The first point was used to set the scale of the reconstruction, so that
the geometric indeterminacies do not affect the result.
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Fig. 2. The upper plot shows the true value of the depth of the 3D points
using the solid line and the fused estimate from the intermediate recon-
structions from all the frames using the dotted lines. The second diagram
plots the decrease in the incremental information with the increasing num-
ber of frames.

1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40
True and Estimated Depth Values

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

Plot of Incremental Mutual Information

Fig. 3. The upper plot shows the true value of the depth of the 3D points
using the solid line and the fused estimate from the intermediate recon-
structions from all the frames using the dotted lines. The lower plot is the
change in the mutual information with increasing number of frames. This
is the case where the estimated reconstruction does not converge to the true
value even with increasing observations.
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Fig. 4. The above figures represent a 3D reconstruction from video using
the method of measuring the incremental mutual information to judge the
quality of the result. (a) is one of the images from the video along with
the set of tracked features used for the reconstruction. (b) represents the
change in the incremental mutual information with the number of images;
(c) depicts one view from the reconstructed model.

4. CONCLUSION

In this paper, we have introduced a method to evaluate the qual-
ity of 3D reconstruction from a video sequence. Existing meth-
ods rely on computing the distortion between the projections of
the reconstructions and the original images and deciding that the
reconstruction is of acceptable quality when the distortion is be-
low a certain empirically chosen threshold. In this paper, we have
shown that it is possible to evaluate the quality of the 3D structure
estimate as the algorithm proceeds by computing the incremental
mutual information, which determines the importance of consid-
ering an additional observation. It is related to the decrease in the
coding length of the actual structure conditioned on the increasing
number of observations. Finally, experimental results have been
provided to justify these claims.
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