
ROBUST ESTIMATION OF DEPTH AND MOTION USING STOCHASTIC
APPROXIMATION

Amit K. Roy Chowdhury, R. Chellappa

Center for Automation Research
Department of Electrical and Computer Engineering

University of Maryland, College Park
MD 20742, USA�

amitrc,chella � @cfar.umd.edu

ABSTRACT

The problem of structure from motion (SFM) is to extract the
three-dimensional model of a moving scene from a sequence
of images. Though two images are sufficient to produce a
3D reconstruction, they usually perform poorly because of
errors in the estimation of the camera motion, thus motivat-
ing the need for multiple frame algorithms. One common
approach to this problem is to determine the estimate from
pairs of images and then fuse them together. Data fusion
techniques, like the Kalman filter, require estimates of the
error in modeling and observations. The complexity of the
SFM problem makes it difficult to reliably estimate these er-
rors and makes the multi-frame algorithm dependent on the
two-frame one. This paper describes a new recursive algo-
rithm to estimate the camera motion and scene structure by
fusing the two-frame estimates, using stochastic approxima-
tion techniques. The method does not require estimates of
the error in the two-frame case, is independent of the under-
lying two-frame algorithm and can reconstruct the scene to
arbitrary accuracy given a sufficient number of frames. Ex-
perimental results are reported to justify the claims.

1. INTRODUCTION

The problem of structure from motion (SFM) is to extract
the three-dimensional model of a moving scene from a se-
quence of images. Traditional SFM algorithms [1], [2] re-
cover a 3D scene structure from two images. However, these
algorithms often produce inaccurate reconstructions of the
scene, mainly due to incorrect estimation of camera motion,
thus necessitating multi-frame algorithms (MFSFM).

One obvious strategy in MFSFM algorithms is the inte-
gration over time approach [3]. However, this method can

Prepared through collaborative participation in the Advanced Sensors
Consortium (ASC) sponsored by the U.S. Army Research Laboratory under
the Federated Laboratory Program, Cooperative Agreement DAAL01-96-
2-0001.

be potentially unstable if the initial estimate of the structure
is inaccurate. An alternative is to obtain a structure estimate
from the most recent pair of images, using a two-frame algo-
rithm, which is then fused with the previous estimate [4]. It
is desirable that such an algorithm be independent of the un-
derlying two-frame algorithm. Moreover, fusion techniques
require a reliable estimate of the error, which is difficult to
obtain for many two-frame algorithms and even when pos-
sible, will be dependent on that particular method.

Our approach tries to address all these issues. We de-
scribe a recursive algorithm to estimate the 3D structure and
camera motion from a sequence of images, given the esti-
mates from every consecutive pair of images. The technique
uses ideas from stochastic optimization (stochastic gradient
and stochastic Newton search) to obtain a robust estimate in-
dependent of the underlying two-frame algorithm. With this
method, it is possible to reconstruct the scene to an arbitrary
accuracy given a sufficiently large number of frames. We
also estimate the number of frames required for the estima-
tion by recursively computing the Fisher information.

2. PROBLEM FORMULATION

It is assumed that the camera is moving in an unknown, fixed
environment, consisting of isolated 3D points. The goal is to
determine the locations of the 3D points and the motion of
the camera in some coordinate system. Before we venture
to describe the algorithm, a few important points are worth
noting.

Observation Statistics Assumptions of normally distributed,
independent observations are abundantly used in many
estimation problems because of the central limit theo-
rem and mathematical tractability. However, in many
natural situations these assumptions are not valid and
can give highly erroneous results. In Fig. 1, we plot
the estimates of the first six moments and the first four
cumulants of the two-frame depths values. For Gaus-



sian random variables, all odd central moments are iden-
tically zero and all cumulants greater than two are zero,
which is not the case as seen from the figure. Regard-
ing independence, since we use the same algorithm for
every pair of images, there is every reason to believe
that the errors will actually be dependent.

Outliers In order to make our algorithm robust to outliers,
we use the least median of squares (LMedS) cost func-
tion rather than the least mean square (LMS). The
LMedS method has a high breakdown point which makes
it robust to outliers [5].

Tracking Camera Motion The camera motion parameters
will change for every pair of frames and need to be
tracked. Thus we will have to incorporate time vary-
ing dynamics into the stochastic approximation frame-
work.

Two-Frame Algorithm As we do not require explicit dis-
tribution statistics for the error in the estimates, the
method is independent of the underlying two-frame al-
gorithm.

We now describe our problem formally. The modeling
of the depth is done for each 3D point separately. Let ��� rep-
resent the depth computed from the � and ���	��
� -th frame,����
����������� , ������
�� being the total number of frames.
As the camera moves to a new position, the fused structure� � is transformed to the new coordinate system as � � � � � ���� � � � ��� � ; and the problem at stage ��� �!
� is to fuse � �#"%$ and� � � � � � , where

� � and � � represent the rotation and transla-
tion of the camera between the � and �����&
�� -th frames. (Note
that the motion is not for every point, but for the entire ob-
ject in the frame). Denoting the rotational component of the
camera motion as '(�*) +-,.��+0/1�2+-354#6 and the translational
component �7�8):9�;<�=9�>?�=9�@=4A6 , � �CB'D�FE . 1 Since we can
estimate only the direction of the translational motion (due
to the scale ambiguity), we represent the motion components
by the vector G(�H) +-,	��+0/<�2+-3I��JLKJLM � JLNJLM 4 . We thus model the
motion components asO �A"%$ � O � �QP � (2)R � � O � �QS �
where O represents each component of the vector G , P andS are noise processes with unknown distribution and R is the
observation from the two-frame algorithm. If TVU���W is the trans-
formed sequence of depth values with respect to a common

1For any vector XZY [ XI\^]_XI`^]AXLa�b , there exists a unique skew-
symmetric matrix cd Y efhg i dkj d�ld�j g i d�mi dkl dm g no
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Fig. 1. The top six figures plot the estimates of the first six
moments of the observation vector and the bottom four fig-
ures plot the first four cumulants. The horizontal axis repre-
sents the pixel number. The first column represents the odd
central moments/cumulants and the second column the even
ones.

frame of reference, then the optimal value of the depth at the
point under consideration is obtained as

p<q �srLtvu�wyx�z{}| O S�U~�_�~�%��U �%� p � �k� (3)

Note that we have addressed all the issues that were raised
above.

3. THE ESTIMATION TECHNIQUE

3.1. Depth Estimation

The Robbins-Monro stochastic approximation (RMSA) al-
gorithm is a stochastic search technique for finding the root� q to �?� � �&��� based on noisy measurements of �?� � � , i.e.�	� � � �����?� � ����S � � � ���=���*
I���������=� , where S � � � � is as-
sumed to be the noise term, � is the number of observations
and ��) � � � �=S���4��Q�?� � � ( � denotes expectation over S ). The
RMSA algorithm obtains the estimate by the following re-
cursion, B� � "%$ � B� � � � � � � � B� � � , where � � is an appropri-
ately chosen sequence [6]. Given a sequence of depth values� $ ���������=�k� corresponding to a particular 3D point, we com-
pute � � � p �0����� �=� p � � , where p (representing the true depth
that we wish to determine) belongs to a predefined search set�

. Then we need to compute the median (say
�
) of ������������ � �

with an unknown distribution �%� , i.e. obtain
�

such that��� � ���s�%��� � � � ��� ���s� . Defining
�1� � B� � �0�s� � � B� � � � ���:�

and � � � B� � ���¡ £¢ ��¤L¥�¦§ ¤�¨ ¦© ¤kª¬« (1 represents the indicator func-



tion and B� �
is the estimate of the camera motion),

��) �	� � B� � � B� � 4C� ��):� � � B� � � B� � 4 � �?�:�� ��)¬ <��� �¯® B� � �^B� � � ��4 � �?�:�� °±�_� �¯® B� � � B� � � � � �?�:�� ���¯�-B� � � B� � � � � �?�:���F��� B� � �k�
Then the Robbins-Monro (RM) recursion for the problem is:

B� � "%$ � B� � � � � ��� � � B� � � � �?�:��� (4)

The choice of the gain sequence � � is determined by the con-
vergence properties of the algorithm [6]. 2 It is required that

� �¯² ��� ³´�µ $ � � �s¶s� ³´�µ $ �·��¯¸ ¶s� (5)

3.2. Camera Motion Tracking

We use the Stochastic Newton algorithm to track the time-
varying camera motion. [6]. Denoting, as before, each com-
ponent of G as O , the tracking equations become

BO � � BO ��¹%$ ��º � » ¹�$� � R �	� BO ��¹�$ �» �}� » ��¹�$��DºI�v��
 �¼» ��¹�$��k� (6)

Since we want to track time-varying dynamics, we must re-
lax the conditions on º as stated in (5). We let ºI� tend to a
small positive number º·� , which is chosen as a tradeoff be-
tween tracking capability ( º·� large) and noise sensitivity ( º~�
small).

3.3. Convergence Properties

It is well known that the RMSA estimate is strongly consis-
tent and the error in the estimate converges in distribution
to a normal with zero mean and suitable covariance matrix
which depends on the Jacobian of �?� � � and � � [6]. Thus
given a suitably large number of frames, the estimate of the
depth obtained by our recursion can be arbitrarily close to
the true value.

3.4. Estimating the Number of Frames

We evaluate the importance of the consecutive observations
by recursively estimating the Fisher information [7]. Given
the observations denoted by ½ , the Fisher information ma-
trix is ¾

� � �¿�À� © )¬��Á ©	Â z.��Ã © ��½Ä�v� �5��Á ©	Â z	��Ã © ��½Ä�v� � § 4 (7)

2We used the commonly chosen gain sequence d�Å Y gLÆ ÇkÈ�É#Ê	Ë�ÇkÌ�Í Î�Ï m
.

where
�

is the parameter to be estimated given the observa-
tions, 3 We estimate the Fisher information using simulta-
neous perturbation for the gradient approximation and aver-
aging for the expectation operation [8]. For the observation
model �h� � �ÀÐ&�=ÐZÑ�Ã�ÒÓ���	� , 4 where Ð is a random
variable with a density Ã�Ò denoting the noise in the obser-
vations, we can writeUU � Â�Ô u�Ã�����Õ<�Ö� UU � Â�Ô u�Ã Ò ��Õ � � �

� UU^× Â�Ô uØÃ Ò �Ù×�� UL×U � � ×Ø�sÕ � �
� � 
Ã Ò �A×�� U�Ã�ÒÓ�A×��U^× �

The estimate of the gradient of Ã	�Ù×�� with respect to ×ÛÚyÜ�Ý :

B���A×���� ÃÞ�A×-�Qß�� � ÃÞ�A× � ß��à
áâ
ã ß ¹%$$

...ß ¹%$Ý
äæå
ç (8)

where ßè�é��ß!$���������=ß Ý � and the components of ß are in-
dependent Bernoulli random variables. The steps in com-
puting the Fisher information are:
Step 1 Given B� � in (4), generate a set of � pseudo measure-
ments according to the empirical distribution of the obser-
vations. Denote these by Õ ÝLê ë {Iì�í ���?� . Calculate the gradi-
ent according to (8). It may be necessary to average several
gradient estimates with independent values of ß . Compute
the term within the expectation operator in the definition of
Fisher information (7).
Step 2 Repeat Step 1 a large number of times. Average the
estimates obtained. This is the estimate of the Fisher infor-
mation, B� � � B� � � .
We can evaluate the relative importance of the observations
by analyzing the increase in Fisher information (see Fig. 2).

3.5. The Algorithm

Assume that we have the fused 3D structure
� � obtained from� frames and the 2-frame depth map � �A"%$ computed from the� and ���~�¼
�� -th frames. The main steps of the algorithm are

Track Estimate the camera motion according to (6).

Transform Transform the previous model
� � to the new ref-

erence frame.

Update Update the transformed model using �k�#"%$ to obtain� �A"%$ using (4).

Compute Fisher Information Compute the Fisher Informa-
tion.

3 î-ï represents expectation with respect to ð and ñ ï represents the gra-
dient with respect to ð .

4 ò is the realization of a random variable ó
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Fig. 2. The figure shows the variation of the Fisher informa-
tion (FI) over increasing frames.

Fig. 3. The first two columns show the first and last frames
used to compute the depth. The last two columns repre-
sent views from camera positions not part of the original se-
quence.

Iterate If increase in Fisher information is small, stop. Else
set ���s�?�s
 and go back to Track.

4. RESULTS AND ANALYSIS

We applied our algorithm for 3D modeling of human faces
from 2D images. Given a sequence of images, we used the
two frame algorithm described in [2] to obtain the depth map
and the motion estimates. In this method, a fast partial search
is used to compute the motion and structure. Given a set of
hypotheses for the focus of expansion, the least squares er-
ror of the system is computed using Fourier transform tech-
niques. The algorithm takes ô���Ð � Â�Ô u�Ð�� operations for aÐ�õ±Ð flow field. The two-frame depths obtained from this
algorithm were then fused by the method described above.
At each stage, the fused estimate was transformed to the new
coordinate system of the next pair of images, using the es-
timates of the camera motion tracked till that frame. A 3D
model was created by interpolating the values at the pixels at
which the depth was not obtained. From this model, we syn-
thesized views which are not part of the original image se-
quence (Fig. 3). To illustrate the point that fusion improves
upon the individual observations, we plot the two frame and
fused depth maps in Fig. 4.

Fig. 4. The first two columns show the first and last frames
used to compute the depth. The third column shows the
depth map from two frames and the last figure represents
fused depth map.

5. CONCLUSION

In this paper we have presented a recursive algorithm for fus-
ing two-frame depth estimates over time using stochastic ap-
proximation techniques. We also demonstrate how to incor-
porate time-varying dynamics to track the camera motion.
Our method is independent of the underlying two-frame al-
gorithm and does not require separate computation of the two-
frame error. The method is robust to stray erroneous val-
ues in the depth and the estimate converges to the true value
given a sufficiently large number of frames. The number of
frames is estimated by recursively computing the Fisher in-
formation of the observations. The work was applied to the
modeling of human faces and results have been presented.
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