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Abstract

In this paper a radial basis function network archi-
tecture is developed that learns the correlation of fa-
cial feature motion patterns and human emotions. We
describe a hierarchical approach which at the highest
level identifies emotions, at the mid level determines
motion of facial features, and at the low level recovers
motion directions. Indiwidual emotion networks were
trained to recognize the ‘smile’ and ‘surprise’ emo-
tions. Fach emotion network was trained by viewing
a set of sequences of one emotion for many subjects.
The trained neural network was then tested for reten-
tion, extrapolation and rejection ability. Success rates
were about 88% for retention, 73% for extrapolation,
and 79% for rejection.

1 Introduction

Visual communication plays a central role in human
communication and interaction. This paper explores
methods by which a computer can recognize visually
communicated facial actions- facial expressions. De-
veloping such methods would contribute to human-
computer interaction and other applications such as:
multi-media facial queries, low-bandwidth transmis-
sion of facial data and face recognition from dynamic
imagery.

Research in psychology has indicated that at least
six emotions are universally associated with distinct
facial expressions. Several other emotions, and many
combinations of emotions, have been studied but re-
main unconfirmed as universally distinguishable. The
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Figure 1: Six universal expressions

six principle emotions are: happiness, sadness, sur-
prise, fear, anger, and disgust (see Figure 1). In this
paper we focus on these emotions.

Most psychology research on facial expression has
been conducted on “mug-shot” pictures that capture
the subject’s expression at its peak. These pictures
allow one to detect the presence of static cues (such
as wrinkles) as well as the position and shape of the
facial features. Few studies have directly investigated
the influence of the motion and deformation of facial
features on the interpretation of facial expressions (a
review of the relevant psychological aspects of recog-
nizing facial expressions appears in [11]). Bassili [2]
suggested that motion in the image of a face would al-
low emotions to be identified even with minimal infor-



mation about the spatial arrangement of features. The
subjects of his experiments viewed image sequences in
which only white dots on the dark surface of the per-
son displaying the emotion are visible. The reported
results indicate that facial expressions were more ac-
curately recognized from dynamic images than from
a single static image. Whereas all expressions were
recognized at above chance levels in dynamic images,
only happiness and sadness were recognized at above
chance level in static images. As illustrated in Fig-
ure 2, Bassili 1dentified principle facial motions that
provide powerful cues to the subjects for recognizing
facial expressions. These results do not explicitly as-
sociate the motion patterns with specific face features
or muscles since such information was unavailable to
the experiment subjects.

Disgust

Figure 2: Motion cues for facial expression [2]

Building on these results we explore the potential
of motion analysis in an autonomous system.

The problem of recognizing facial expressions has
recently attracted attention in the computer vision
community [4,8,10].

Yacoob and Davis proposed an approach for analyz-
ing and representing the dynamics of facial expressions
from image sequences [10]. This approach is divided
into three stages: locating and tracking prominent fa-
cial features (i.e., mouth, nose, eyes, and brows), using

optical flow at these features to construct a mid-level
representation that describes spatio-temporal actions,
and applying rules for classification of mid-level rep-
resentation of actions into one of six universal facial
expressions. On a sample of 46 image sequences of
32 subjects displaying a total of 105 emotions, the
system achieved a recognition rate of 86% for ‘smile,’
94% for ‘surprise,” 92% for ‘anger,” 86% for ‘fear,” 80%
for ‘sadness,” and 92% for ‘disgust.” Blinking detection
success rate was 65%.

Connectionist architectures have been used in vi-
sual classification problems with great success [6,3].
The classification of visual imagery, however, has
mainly focused on static imagery. Seibert and Wax-
man [7] recently developed a system that performed
object recognition using the object’s rigid motion. The
neural network learned correlations between different
aspect views of an object, and as the network observed
a sequence of the object moving in space, it accumu-
lated evidence of the object it was viewing.

The work reported here explores the use of a con-
nectionist learning architecture for identifying the
non-rigid motion pattern characteristics of facial ex-
pressions. The neural network views variable length
sequences of images of a human subject instead of a
single static image. The connectionist approach could
replace the expert rules developed in [10], and may
allow developing person-specific learning capabilities.

2 Overview of our approach

The following constitute the framework within
which our approach for analysis and recognition of fa-
cial expressions 1s developed:

e The face 1s viewed from a near frontal view
throughout the sequence.

e The overall rigid motion of the head is small be-
tween any two consecutive frames.

e The non-rigid motions that are the result of face
deformations are spatially bounded, in practice,
by an nxn window between any two consecutive
frames.

The system is similar to [10] in the tracking and
optical flow computation but differs in the analysis
and interpretation of motion patterns. The system is
composed of the following components:

e Optical flow computation: Optical flow is com-
puted at the points with high gradient at each
frame. Our algorithm for flow computation is



based on a correlation approach proposed by
Abdel-Mottaleb et al. [1]. It computes subpixel
flow assuming that the motion between two con-
secutive images is bounded within an nxn win-
dow.

e Region tracking: We assume that, for each fea-
ture, we can initially compute a rectangular re-
gion that encloses it. Such an algorithm has been
recently proposed for range data by Yacoob and
Davis [9] and a similar algorithm could be devel-
oped for intensity images. Our algorithm tracks
these regions through the remainder of the se-
quence. The tracking is based on the localization
of points with high gradient and the optical flow
fields computed at these points.

e A connectionist architecture for learning what fa-
cial motion information and relations are impor-
tant to the determination of emotion. This sys-
tem learns using a training set which consists of
sequences of images from a diverse set of human
subjects experiencing the same emotion.

3 The Inputs and Outputs of the NN

We perform three stages of preprocessing on the
input sequence before providing input to the neural
network. The first stage generates a sequence of im-
ages which represents the instantaneous optical flow
of the image sequence. The second stage extracts, us-
ing tracking techniques, the important facial features
from the optical flow sequence (i.e., the right and left
eyebrows and the mouth). The third stage performs a
log-polar transformation on the feature motion images
of the sequence. This transformation compresses the
outer extremities of the feature images for the purpose
of reducing the effects of size variance. Size variance
occurs because of subjects’ varying distance from the
camera, motion during the image sequences, and the
natural variation in the sizes of subjects’ features.

The output of the system could be structured so
an output is associated with each emotion. This rep-
resentation, however, does not provide enough spread
for the neural network to learn effectively. An inter-
mediate output representation is required to provide
this spread. The intermediate output representation
chosen represents the stage of an emotion to which
an input image of a sequence belongs. The activation
of an output unit in this representation corresponds
to the network’s confidence that the emotion of the
current sequence is in the stage corresponding to the
particular output unit.

Pomerleau [6] found that when there exists a prox-
imal relation between output units the supervised
learning unit activations should reflect this relation.
In our application, an output unit represents a stage
of an emotion and the stages are related by the obvi-
ous temporal proximal relation. If the current train-
ing vector is to reflect that the emotion is currently in
stage N, then output unit N should be set with the
greatest activation, while output units N4+1 and N —1
should be set with a slightly lower activation and so on
until the boundaries of the output vector are reached.
Pomerleau used a Gaussian function to set the train-
ing activations. We also used a Gaussian, placing its
peak on the current stage in the output training vec-
tor and setting the output units corresponding to the
value of the Gaussian at that position in the vector
(see Figure 3).
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Figure 3: The Gaussian weighted output vector

4 The Network Architecture

The complexity of recognizing facial expressions re-
quired dividing the emotion detection problem into
three layers of decomposition. The first layer is by
emotion (see Figure 4), and occurs at the network
level- we train a separate network for each emotion
(i.e., six separate networks in total). During training,
a network in this layer is only exposed to one emotion
for multiple subjects. The second layer is at the fa-
cial component level. This decomposition is internal
to each of the emotion tuned networks. Each emotion
network 1s broken into subnetworks, where each sub-
network specializes in a particular facial component.
Since we are focusing on three facial components, each
emotion network consists of three subnetworks. A
component tuned subnetwork only uses the portion
of the input vector that corresponds to its component
specialization. The third layer is by direction sensi-
tivity, and further decomposes the component subnet-
works. In other words, these “subsubnetworks” are



sensitive to one direction of motion for a specific pre-
assigned facial component for a specific emotion. In
order to capture all resultant motions, we use the four
direction sensitivities of up, down, right, and left.

The fusion of information from each of the six emo-
tion tuned networks i1s performed by a process external
to these networks, and can be connectionist or hand
coded in nature. We developed a hand coded scheme
(discussed below) which combines the outputs of all
six emotion networks. The fusion of information from
the internal subnetworks is done internally in each of
the emotion networks. The fusion i1s done implicitly
through the coupling of these component subnetworks
through the output units of the individual emotion
network.

Post-Network Output
Interpretation Scheme
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Figure 4: The hierarchy of networks based on emotion
decomposition

5 The Basic Building Block

Because of their ability to directly represent proto-
typical situations of the application in the receptive
field centers, we chose to use a modified version of the
radial basis function network (RBFN) [5] as the archi-
tecture for the basic building blocks. In the following
section we discuss the enhancements we made to the
basic RBFN architecture to handle the temporal rela-
tions associated with this problem.

An RBF receptive field is a response region in N
dimensional input space, with an N component cen-
ter coordinate. The input space can be considered as
an image space, since the input units are clamped di-
rectly to the values of the pixels of an image feature
retina. Since each coordinate in image space corre-
sponds to a unique image on the image retina, the
receptive field centers also correspond to unique im-
ages on the image retina, and these function as the
application templates. The maximum response of a
receptive field occurs when an input image is situated
at the same location as the center of the receptive

field, and the response degrades in a Gaussian fashion
as the Euclidean distance of the input image to the
receptive field center increases.

5.1 The Spatio-Temporal Building Blocks

The RBFN architecture is not well suited to han-
dle temporal relations. A significant part of the task
of analyzing sequences of images, is being able to re-
late information from one frame to the next. Thus,
enhancements that will allow past information to con-
tribute to the current response are necessary. For ex-
ample, in the ‘surprise’ emotion, the eyebrows move
downward at the end of the emotion, and in ‘anger’
the eyebrows move downward at the beginning of the
emotion. In order to determine whether the eyebrows
are moving downward in the ‘surprise’ or ‘anger’ emo-
tion, 1t is necessary to determine what happened to
the eyebrows before they moved downward.

Past information is incorporated into the input vec-
tor by using feedback from the previous state of the in-
put vector multiplied by a decay constant. Input units
that use self feedback are called “context units”[3].
The activation function for each input unit in our ar-
chitecture is:

Cift) = { 1 if «Ci(t — 1)+ Li(t) > 1
! OzCZ'(t— 1)—|—Il(t) if OzCZ'(t— 1)—|—IZ(t) <1
where Cj;(t) is the activation of input unit ¢ at time ¢,
C;(t —1) is the activation of input unit ¢ at time ¢t — 1,
« is the decay constant, and I;(¢) is the current input
to unit ¢ at time t. The decay constant is set so that
remnants of previous motions linger for a portion of
the sequence. If motion occurs for several iterations at
the same pixel location in the input image, the input
unit activation that corresponds to that pixel location
becomes saturated and is set to the maximum activa-
tion level of one.

Each emotion subnetwork consists of receptive
fields tuned to the particular facial feature, and the
weights fully connecting those receptive fields to the
output units. The set of receptive fields corresponding
to a particular feature and for each motion direction
are further tuned to become sensitive to only portions
or subsequences of the input sequence. In other words
the component receptive fields become sensitized to
stages of the emotion sequence for the component and
direction they are assigned to. A receptive field cen-
ter image or template is set by integrating the mo-
tion images for a subsequence of the receptive field’s
assigned facial component and motion direction sensi-
tivity. Any position in the summed image that has a



value greater than zero is set to one. This is similar
to how the input vector is calculated using a decay
constant, except in this case the decay constant is set
to one, and the subsequence of images has a start and
end frame in the sequence. Figure 5 shows how a sub-
sequence is used to set the center of a receptive field for
a simple sequence of a ball moving across the retina.
It is important to note that an input vector can never
perfectly match a receptive field center template un-
less the decay constant for calculating the input vector
is set to one.

In order to minimize the problem of overloading and
under-utilizing receptive fields, we defined a parameter
which represented the minimum number of pixels that
must be turned on during the image summing stage
to set a receptive field center with the summed image.
If the number of “on” pixels during the summation
crossed over this minimum threshold, no additional
images were incorporated into the summed image and
a receptive field center was set with the current accu-
mulated image. The result was that portions of the se-
quence where significant motion occurred were spread
over more center templates for higher temporal resolu-
tion, and portions of the sequence where little motion
occurred were fit into fewer center templates for lower
temporal resolution.

Receptive field template
for subsequence of 5 frames
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Sequence
Motion
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Figure 5: The approach to setting the receptive field
centers from subsequences.

In addition to using past information to set the cen-
ter positions of the receptive fields, past information is
also used to determine the activations of the receptive
fields during the training and usage modes. The de-
termination of a receptive field activation is similar to
the determination of the activation of an input unit,
in that the activation from the previous time step is
factored into the activation at the current time step
using a decay constant. The activation of a receptive
field in our architecture is determined by the following

equation:

1 if ypi (1, 1) +Vi(t)> 1

pi( T, t+1) = { vpi (Ze,t) +Vi(t) otherwise

where (3 is the decay constant and

exp (=B (Feg1 — @) (Fep1 — @)
> exp (=8 (Feq1 — @)1 (Feq1 — a@))
Like the input vector determination, the receptive field

response can become saturated, in which case the ac-
tivation is set to one.

Vit) =

6 Experiments and Results

We use two forms of analysis of the emotion net-
work outputs: absolute and relative analyses. For our
preliminary experiments, we only trained two emotion
networks; one for the ‘smile’ emotion, and another for
the ‘surprise’ emotion. The test stage included image
sequences of ‘smile,” ‘surprise,” and ‘anger’ emotions.
Anger was used as a null reference since neither of the
trained networks was tuned for ‘anger.’

Before we discuss the methodology and results we
define the terminology used. The term familiar-face
indicates that the face used is that of a person that
the system has seen in the training session. For such
a face there can be two types of sequences, familiar-
and unfamiliar-sequences. The former denotes those
image sequences that were used in the training, and
the latter indicates these sequences of the familiar-face
that are new to the system.

6.1 Absolute Analysis

In order to evaluate the performance of the neural
network architecture, we conducted experiments that
measure the network’s retention, extrapolation, and
rejection ability. Retention refers to the ability of the
network to perform successfully on familiar sequences.
Extrapolation refers to the ability of the network to
perform successfully on sequences of unfamiliar faces.
Rejection refers to the ability of the network to reject
a sequence that did not express the emotion that the
network was tuned for.

To measure the performance of the system relative
to the above criteria we divided the experiments into
four categories. The first category encompassed fa-
miliar sequences, and it measured the networks re-
tention ability. In the second category, unfamiliar
faces were tested in order to measure the extrapola-
tion ability. The third category included unfamiliar



sequences of familiar faces and it measured a smaller
increment of extrapolation than the second category.
The fourth category included sequences of emotions
that the tuned network did not specialize in (these can
be for any type of emotion and face) and it measures
the rejection rate of the network.

For each of the ‘smile’ and ‘surprise’ emotions, we
trained two networks that only differed in receptive
field width, and we tested each network using the
four test categories. FEach network was trained for
100,000 iterations, and the receptive field widths for
SMILENET 1 and SURPNET 1 were larger than the
receptive field widths for SMILENET 2 and SURP-
NET 2 (see Table 1). The ‘smile” and ‘surprise’ net-
works were trained with 20 and 14 subjects, respec-
tively. The output vector for each network represented
40 stages of an emotion. We used the criterion of at
least seven stages being turned on to signify that the
network recognized the emotion of a sequence, and we
used an iteration confidence threshold of 0.155 to in-
crement a stage counter for a frame of the sequence.
Table 2 shows the results from the absolute analysis.

network mouth rf widths | eyebrow rf widths
SMILENET 1 1 1
SURPNET 1 1 1
SMILENET 2 694 .563
SURPNET 2 694 .563

Table 1: The relative receptive field width settings

network familiar seq | unfam. face | unfam. seq. | foreign expr.

SMILENET 1 16/20=80% 2/4=50% 7/7=100% 29/41=71%
SURPNET 1 13/14=93% 5/6=83% 3/3=100% 39/52=75%
SMILENET 2 16/20=80% 2/4=50% 1/7=57% 32/41=78%
SURPNET 2 13/14=93% 2/6=33% 3/3=100% 16/53=87%

Table 2: The results of the absolute analysis

In Table 3 we further break down category 4 to
compare the rejection rate of ‘anger,” ‘smile’ and ‘sur-

prise.” The results indicate that ‘anger’ got the best
rejection rates.
network anger surprise smile
SMILENET 1 | 16/18=89% | 13/23=57% -
SURPNET 1 17/18=94% - 22/31="T1%
SMILENET 2 | 16/18=89% | 16/23=70% -
SURPNET 2 | 18/18=100% — 28/31=90%

Table 3: The further breakdown of category 4

The results indicate that the retention rates are
higher than the extrapolation rates. In Table 3 the
rejection rates for ‘surprise’ were better than those for
‘smile’ for the three emotions. For the ‘smile’ and ‘sur-
prise’ networks with the same receptive field widths,
the ‘surprise’ network had a much higher rejection rate
of the ‘smile” emotion than the ‘smile’ network had
of the ‘surprise’” emotion. The larger detectable mo-

tion of the ‘surprise’ emotion improved performance
for all four test categories, thus, improving retention,
extrapolation and rejection of the ‘surprise’ networks
over the corresponding width size ‘smile’ networks.

Also from Table 2 and Table 3 we can see that larger
receptive field widths enhanced extrapolation abilities
of the networks (categories 2 and 3), but at the same
time reduced the retention and rejection rates (cate-
gories 1 and 4). Since one of the main goals of this
research was to determine if a network could learn the
commonalities of an emotion over a wide population
from a small sample set, wider receptive field widths
are better suited for our application. On one hand, if
the receptive fields widths for a network are too large,
thus over-generalizing, then all the receptive fields will
respond with equally large activations, and the cate-
gorizing ability of the network is lost. On the other
hand, if the receptive field widths are too small, the re-
ceptive fields will respond crisply to training patterns,
but will have negligible responses to test patterns that
only vary slightly from the training patterns, thus pos-
sessing no generalization ability. Therefore a reten-
tion/extrapolation trade-off exists between large and
small receptive field widths.

6.2 Relative Analysis

Since it was our intention to teach a network ex-
trapolation instead of retention, we focused our rela-
tive analysis on networks SMILENET 1 and SURP-
NET 1, which had better extrapolation performance
because of their relatively larger receptive field widths.
The relative analysis is dependent on the results of the
absolute analysis. Similarly, in the relative analysis
we defined four test categories to measure retention,
extrapolation and rejection. The first category tests
familiar sequences of ‘smile’ or ‘surprise.’” The sec-
ond category tests sequences of unfamiliar faces. The
third category tests unfamiliar sequences of familiar
faces in at least one of the two training sets. The
fourth category tests expression sequences foreign to
both networks. Since we trained on the ‘smile’ and
‘surprise’ emotions, the only emotion sequences in the
fourth category were those of ‘anger.’

In the relative analysis, we compare the responses of
the two networks; the thresholding is done in the ear-
lier absolute stage of analysis. In the case of two net-
works, we have four possible combinations of outputs:
Yes/Yes, No/Yes, Yes/No, and No/No (where a “Yes”
signifies that a network recognizes a sequence as its
specialization emotion, and a “No” signifies the net-
work did not recognize the emotion). The Yes/No and
No/Yes responses are straight forward, in that the rel-



ative emotion response is taken as the emotion of the
network that responded with a “Yes”. The No/No rel-
ative response also represents a clear answer that nei-
ther network recognizes the emotion of the sequence.
The Yes/Yes response is ambiguous however, and is re-
solved by the relative analysis. To resolve the Yes/Yes
ambiguity, the absolute output statistics of each net-
work for the ambiguous sequence are compared. We
used the number of stages turned on as the comparison
statistic. The network that had the highest number
of stages turned on was declared the winning network,
and the resultant emotion was determined to be the
specialization emotion of that network. The Yes/Yes
ambiguous response was possible in test categories 1,
2, and 3; thus, the relative ambiguity resolution was
expected to improve the performance for these three
categories. Table 4 shows the results from the relative
analysis after the ambiguity resolution for categories

1, 2 and 3.

familiar seq. | unfam. face | unfam. seq. | foreign expr.

30/34=88% | 11/15=73% | 11/12=92% | 14/18=77%

Table 4: The results of the relative analysis

In order to compare the absolute and relative anal-
yses, the absolute performances for the SMILENET
1 and the SURPNET 1 are combined into one per-
formance measure based on a weighted average of the
number of test cases for each network in each test set
category, except category 4, since it does not apply.
Table 5 shows the combined results from the absolute
analysis compared with the results from the relative
analysis for each category. The results show an ex-

analysis | familiar seq. | unfamiliar face | unfamiliar seq.
absolute 85% 70% 100%
relative 8% 73% 92%

Table 5: Comparison of the absolute results with the
relative results

pected slight performance improvement for categories
1 and 2, and an unexpected slight reduction in perfor-
mance for category 3 between the absolute and relative
analysis. The reduction in performance for category 3
was caused by the incorrect network having a higher
score than the correct network.

7 Conclusion

In this paper, we developed a human emotion de-
tection system based on radial basis function network.
By training the network, it was able to learn the cor-
relations between facial feature motion patterns and
specific emotions. In order to capture the temporal
relations that are important to emotion detection sev-

eral enhancements were made to the underlying net-
work architecture. In order to make the problem more
tractable, the emotion detection problem was decom-
posed at several levels: emotion, facial feature, and
motion direction sensitivity levels. For our prelimi-
nary experiments, of the six universal human emo-
tion expressions, we trained networks to recognize the
‘smile’” and ‘surprise’ emotions. Our experiments were
designed to test a network’s retention, extrapolation,
and rejection abilities. The analysis of the experimen-
tal results were conducted in an absolute and a rela-
tive mode. The purpose of the relative mode was to
improve overall emotion detection over the absolute
mode by comparing all network outputs and picking a
winner.

Our experiments suggest that networks tuned bet-
ter on emotions that involved more pronounced mo-
tion. We also found that a trade-off existed between
large and small receptive field widths. Large widths
improved extrapolation, while degrading retention and
rejection, while small widths had the opposite effect.
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