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Abstract

We develop computational models for mea-
suring hair appearance for comparing differ-
ent people. The models and methods devel-
oped have applications to person recognition
and face image indexing. An automatic hair
detection algorithm is described and results re-
ported. A multidimensional representation of
hair appearance is presented and computational
algorithms are described. Results on a dataset
of 524 subjects are reported. Identification
of people using hair attributes is compared to
Eigenface-based recognition along with a joint,
Eigenface-hair based identification.

1 Background

Hair is an important feature of human appearance
but its detection, representation, analysis and use
have not been studied in the computer vision com-
munity. Hair analysis has at least two potential
applications areas: human identification and im-
age indexing of faces. It has been suggested [13]
that humans employ hair as a cue for face recog-
nition. Specifically, it was shown that hair is a
prominent cue and that changes in hair-style or fa-
cial hair can mislead the observer in the recognition
of faces. Also, [2] contends, based on a survey of
cue saliency, that hair is the most important sin-
gle feature for recognizing familiar faces, suggesting
that it should be advantageous to use in recogni-
tion. Since hair appearance and attributes can so
easily be changed, they have been widely regarded
as unstable features for face recognition. The fact
is, however, that while humans can drastically ma-
nipulate their hair to significantly alter their ap-
pearance, they typically do not do so. Moreover,
there are variety of situations (e.g., face partial oc-
clusion, side and back views) where face recognition
is not viable, yet hair may provide a useful cue for
identification. Identity verification can also benefit
from evaluation of hair properties.

We are not aware of any prior work on hair detec-
tion, representation and use in the computer vision
or image processing communities. However, hair
has been an important research topic in computer
graphics and animation [5, 8].

An extensive discussion of hair properties and
associated attributes can be found in [1]. Hair
can be represented along the following dimensions:
length, volume, surface area, dominant Color, col-
oring (i.e., color variations), forehead/outer hair-
line, density, baldness, symmetry, split location, re-
flectance/shine, structural alteration: (e.g., banded,
layered or braided hair), layering arrangement, tez-
ture, sideburns, facial hair cover, In the rest of
the paper we address several of these dimensions.
Structural alterations, layering, density and facial
hair are not addressed due to the difficult challenge
of 3D recovery of shape properties or the difficulty
of observing them in typical image resolutions.

2 Approach

A dataset of 524 color images of subjects
(1600x1200 and 768x576 pixels) taken in several
locations (hair salons, on campus, social events)
and over a period of a few months was collected
(multi-ethnic and balanced numbers of males and
females). Out of these, 126 faces were taken from
the Aleix Martinez and Robert Benavente database
[9]. This dataset is used to evaluate the similar-
ity between the hair of subjects based on individual
attributes of their hair. A second dataset consist-
ing of over 3100 images (126 subjects) taken from
Aleix Martinez and Robert Benavente database [9]
is employed to assess the performance of person-
identification from single hair attributes, aggregate
hair, eigenface-based, and combined eigenface and
hair based information.

2.1 Hair Detection

Hair is a highly variable feature of human appear-
ance; it perhaps is the most variant aspect of human
appearance. Its automatic detection is challenging;
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Figure 1: Region selection for hair detection (left) and
Approximate model of the head (right).

we describe an algorithm for automatic detection of
hair. We assume that faces are in frontal view. The
detection algorithm consists of the following steps
(the first two are available in the public domain and
are not described in detail here):

e Face detection. Face detection has been re-
ported by many researchers (e.g., [6, 12]). We em-
ploy the algorithm based on a cascade of boosted
classifiers (part of Intel’s OpenCV) to detect face
regions in the image [6].

e Eye detection. We also use the cascade of
boosted classifiers to train eye detectors to lo-
cate the eyes within a face region. Face and eye
detection allow us to normalize face sizes so hair
representations can be compared.

e Skin color modelling. The subject-specific
skin color is modelled based on automatic selec-
tion of three regions, two are below the eyes and
one at the forehead (see Figure 1 -left). The color
model follows [4] and is discussed in Section 2.2.
This skin modeling approach takes into account
the possibility that some non-skin pixels may be
present in the rectangles.

e Head hair color modeling. Hair is assumed to
be present at one or more of three principle loca-
tions adjacent to facial skin, namely, right, mid-
dle and left sides of the upper face (thick white
rectangles in Figure 1-left). The initial areas are
automatically set based on the location of the de-
tected face and eyes. The skin color model is used
to identify non-skin pixels in these regions, and
these pixels form the seed to separately model
the hair color in each region. If the distance be-
tween the three colors (i.e., the distance between
the means of the RGB values of the colors) is
small, then the overall color is recalculated us-
ing the pixels of the three regions, otherwise the

color is computed at the forehead rectangle and
is assumed to be the seed color. The seed color is
iteratively refined by computing the model of the
color of the rectangles above each of the current
rectangles, and examining if this color is close to
the seed color. If it is close, the current model is
recalculated. The process ends when the color of
a rectangle is not close to the seed color. Stan-
dard image processing techniques are used to fill
in holes in the hair region and create a connected

component.

Successful automatic hair detection

e
®

Figure 3: Unsuccessful hair detection

Figure 1(left) shows an example of automatic
hair detection. The face and eyes are detected and
shown. The skin-color sampling areas are shown as
three green rectangles and the initial three sampling
areas for the hair are shown as thick white rectan-
gles. The thinner rectangles show the first iteration
of the (upward) neighboring rectangle assessment.
The detected hair and brows are shown in red and
blue (respectively). Figure 2 shows successful head
hair detection of five subjects. Figure 3 shows un-
successful head hair detection.

This automatic hair detection procedure achieved
a 71% success on head hair detection on the 526
face dataset (as judged by visual inspection). How-
ever, it achieved 93.6% on the 126-face dataset
[9]. This is probably due to the fact that the lat-
ter dataset was taken under controlled conditions
whereas our dataset was collected by hair-stylists
in public spaces. Several issues affect the perfor-
mance of our algorithm: overlap of actual hair color
with background regions (Figure 3, left), determin-
ing that a subject has no or little hair (Figure 3,



Figure 4: Illustration of brightness and chromatic-
ity color model (left) and hair shine (right).

second from the left), and detection of the hair of
subjects with multiple hair colors cannot be accom-
plished with our algorithm because of the color co-
herence assumption around the facial skin (Figure
3, rightmost two pictures). To focus on the objec-
tive of representing hair, in the experiments below
we manually performed hair detection for the 29%
cases where the algorithm did not provide accept-
able results.

2.2 Hair Color

The computer graphics community has developed
models that seek to render hair realistically [5, 8].
The most widely used model was proposed by Ka-
jiya and Kay [5] who employed a Lambertian sur-
face model to represent the diffuse component (re-
flecting brightness) of a single hair represented as
a cylinder. The specular component of hair em-
ployed a Phong reflection model that was modified
to a cylindrical surface. We employ a similar model
that assume that hair is Lambertian so the mea-
sured color results from brightness and surface spec-
tral reflectance. A model that separates these two
components can facilitate color constancy detection
by focusing on the surface spectral reflectance com-
ponent. Specifically, the color model (see [4]) ac-
counts for highlights and shadows that often affect
the brightness of the color of the hair. Figure 4(left)
illustrates the color model proposed in [4]. In the
figure E; = (E, (i), E4(i), Ey(i)) represents the ex-
pected (modeled) color RGB values at pixel i and
I; = (I(i),14(i), I(3)) is the actual RGB color at
pixel . The line OF; is called the expected chro-
maticity line. The distortion between I; and E; can
be attributed to brightness and chromaticity by ob-
serving that brightness similarity is equivalent to
bringing the point I; to the line OF; and can be
posed as minimization of the error

flag) = (I — ai Ey)? (1)
where a; represents the current brightness with re-
spect to the brightness of the model (being greater

than 1 if it is more bright, i,e., highlighted, and less
than 1 if it is less bright, i.e., shadowed). Color
distortion, C'D;, is defined as:

CD; = ||Ii — aiEil] (2)
Computing a hair color model involves using sample
pixels from the subject’s hair to estimate a 4-tuple
< Fg,ds,as,bs > where E; is the mean (R, G, B)
value for the color, ds is the standard deviation
of the color training set, as is the variation of the
brightness distortion among the points in the train-
ing set and b, is the variation in the chromaticity
among these points. This model is employed to clas-
sify colors while accounting for shadows and high-
lights as particular brightness values with respect
to the model. A pixel i is classified as matching the
color model based on the observed distortion value
a; that is computed with respect to the color model.
A threshold value is used to accept the brightness
and chromaticity deviation from the color model.
Specifically, a pixel is classified by first computing
the distortion «;

(Ir(Dpr/or)® + (g (D1g/g)” + (Ts(Dus/0b)?

o= (i /)2 + (19 /76)® + (i) 71)2 ®
and CD;

— \/(mn o) (UalD—oute)p (o))
where (g, ttg, pt5) is the mean of the color in £
training set and (o,,0,,0p) is the standard devia-
tion of this set. A point is classified as matching the
color model if the computed C'D; is smaller than a
preset threshold and «; falls in value between two
thresholds that are determined automatically based
on the desirable detection rate of the color in the
training region.

The distance between the means of the dominant
hair color of two subjects measures the similarity of
their hair colors. Figure 5 (left) shows the closest
five matches of hair color to the left most person
in each row. The normalized distance between sub-
jects and the left most subject is shown as a red
bar in which its length decreases as the distance
between subjects increases. These are few sam-
ples from the cross-subject similarity of the whole
dataset of 524 subjects (all following results in this
section use this dataset).

2.3 Hair-Split Location

A hair split location commonly appears as either a
darker shade of the hair color (along the split lo-
cation) or as revealed skin within the hair region
(Figure 4, right). Also, a split is accompanied by
a concavity point at the outer hairline and/or the



Figure 5: Dominant Color results. The closest five
matches to the subject at the left of each row are shown.
The longer the red bar the closest the distance is be-
tween each subject and the leftmost subject.

forehead. The person-specific skin and hair color
models are used to detect the presence of a hair
split and its location. For each concavity point on
the outer and forehead hairline at the upper part
of the head, the mean of the color adjacent to the
line connecting this point to the glabella (G in Fig-
ure 4) is computed and compared to the shadowed
skin and hair color models. Also, the mean of the
colors adjacent to the lines £5 degrees off this line
are computed (4, right). Figure 4 (right) shows the
lines in the case of successful split detection. If the
hair color is dark (e.g. black) and no skin is visible,
a split may exist if there are two concavity points,
one at the outer hairline, and another at the fore-
head hairline that fall approximately on a straight
line with the glabella.

A split is defined by the angle it creates with re-
spect to the horizontal axis. Splits are compared
based on the difference between their respective an-
gles. Figure 6 (top) shows the closest five matches
of split-location to the left most subject in each row.

2.4 Hair Volume

We employ an approximate model for the head
utilizing anthropometric information [3] (Figure
1(right)). The location of the point SE (center
point between the two eyes, computed at the de-
tection stage) is used to determine the location of
the glabella G (the horizontal coordinates for G
and SE are equal, and the vertical coordinate of
G is 1.8 times the height of the eye upward from
SE). The top half of the skull is assumed to be a
spheroid with the minor axis r as the distance be-

Figure 6: Hair split, volume and length (top to bot-
tom, respectively) closest five matches to the left
most subject.



tween the glabella, G, (approximately the meeting
point of eyebrows) and the top of the ear. The ma-
jor axis distance, R, (which is the distance between
the glabella and the top of the skull) is calculated
using anthropometric statistics indicating that the
average ratio between the major and minor axes
is approximately 1.35 [3]. The value r of the mi-
nor axis is computed from the average eye width in
the image, e to be r = (e * (151.1/31.3))/2, where
151.1mm is the average head width at the glabella
and 31.3mm is the average eye fissure.

Each image pixel within the rendered spheroid
(parameterized by r and R) can be associated with a
latitude and longitude in the same way the spheroid
Earth is described. The 3D distance, d, between two
points is computed given the latitude and longitude
of these points.

The area is divided into 624-sectors covering 360
degrees. As we move along each sector the radius,
', isr’ = y/(r?cos?6 + (1.35r)2sin?@). Within each
sector, we calculate the average hair length (i.e.,
h =y — ' see Figure 1 Right). The inner hairline
boundary (which is at a perpendicular distance
from @) indicates, approximately, which portion of
the wvisible part of the spheroid is covered by hair.

The space occupied by the hair of a sector is
computed as the 3D distance, d, on the spheroid
between x and P (where P is the hypothesized pro-
jected edge of the spheroid) multiplied by the hair
height h (assuming hair length is constant along
the sector). The hair volume is a summation of the
space occupied by the hair of all sectors. Note that
if z > P, the volume of the sector is equal to the
distance y — x, and d = 1; this also accounts for the
volume calculation of the hair found below the level
of the ears. Figure 6 (middle) shows the closest five
volume matches to the leftmost subject in each row.

2.5 Hair Length

Hair length is computed as the larger of the distance
between the spheroid boundary, P, and the outer-
hairline boundary y, and the inner-hairline bound-
ary ¢ and P (see Figure 1 (right)). Hair below the
ears is assumed to grow at the horizontal line pass-
ing through the glabella so in effect the growth is
from the top of the ear level, which is approximately
the midpoint of the skull. The length is the verti-
cal distance between the hair boundary point and
the vertical coordinate of the ear. The hair length
is computed across all the points and the largest
value is taken as the hair length

h = max(y — P,z — P) (5)

where « is the sweep angle. Figure 6 (bottom)
shows the closest five matches to hair length of the
left most subject.

2.6 Surface Area Covered by Hair

The surface area covered by hair is computed for the
top of the head (above eye-level) using the spheroid
head model. This area is divided into sectors sim-
ilar to Section 2.4. The distance d (between the
points z and P) is computed using the latitude and
longitude of the two points. The surface area is the
summation of the distances, d, in all sections above
the ear level. Figure 7 (top) shows the closest five
matches to surface area of the left most subject.
Note that baldness is readily reflected in diminish-
ing surface area (second row).

2.7 Hair Symmetry

The head is divided into left and right sides and the
ratio of the volumes of hair (Vyignt/Vies:) reflects
the degree of symmetry. Figure 7 shows the closest
five matches hair symmetry to the left most subject
from among the 50 faces that are closest in terms of
the total hair volume (so that symmetry and total
volume are linked).

2.8 Inner and Outer Hairlines

The similarity between the hairlines of subjects is
calculated as a function of the outer and inner hair-
lines. The inner and outer hairlines of subjects are
reparameterized using a radial scan with respect to
the glabella and normalized by the face size. Then,
the inner and outer hairlines are each normalized
to a fixed-size, 624 x 2 units spanning 360 degrees.
Principal Component Analysis computes the sub-
space of the concatenated (inner and outer) hairline
vectors (after subtracting the mean of the exem-
plars). In our experiments we found that 15 princi-
pal vectors are sufficient to capture more than 95%
of the variability of the hairline. The distance be-
tween two subjects is computed as the Euclidean
distance between their respective coefficients in the
PCA subspace. Figure 7 (bottom) shows the closest
five matches of hairline to the leftmost subject.

2.9 Hair Texture

We adopt the method proposed by Manjunath and
Ma [7] for computing hair texture features. The
method employs Gabor wavelets to compute a fea-
ture vector that can be used for matching different



Figure 7: Surface area, symmetry and hairlines (top
to bottom, respectively) closest five matches to the left
most subject.
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Figure 8: The closest five matches of hair texture to
the left most subject.

images. Given a hair region, we extract all 64x64
non-overlapping templates. The difference in tex-
ture between two subjects $;7 and S,% (P and @
are the number of templates), is defined as

P
DER =) mind d(i,j))/P (6)
i=1

where d(i, 7) is the distance between template 7 and
j as defined in [7]. This essentially sums the min-
imum distance between each template of S;¥ and
the closest template of S». It should be noted that
D12PQ is not equal to DngP and therefore two sub-
jects’ hair have similar texture only if D579 and
Do 9T are both small and similar in value. Define
EY S ding

PQ _ j=1 )
M9 = [2 == (M
which reflects the average distance between all tem-
plates of S;¥ and all the templates of S,9. This
distance satisfies M12PQ = M21QP. The total nor-
malized distance between S;° and $59

Tis"9 = M1579/min M1,77 4+ D127?%/min Dp, "% (8)

q q

where ¢ is calculated over all the subjects in the
dataset. Figure 8 shows the closest five matches of
hair texture to the left most subject.

3 Human Identification

We present an experiment that measures the effec-
tiveness of the hair representation and attributes
for human identification. We compare the results to
eigen-face recognition [14]. We use the Aleix Mar-
tinez and Robert Benavente (AR) dataset [9], which
includes about 26 images of 126 subjects (some sub-
jects have fewer than 26 images). A total of 3153



images are employed. The images were taken of the
subjects at two sessions (2 weeks apart), 13 images
each session; face expression, lighting, eye-glasses
and neck/head cover were used to disguise or al-
ter the appearance of the individual. Note that
the sunglesses and scarf-worn images are extremely
challenging and to our knowledge have been tackled
only in [10] by dividing the face region into a fixed
number of regions which are analyzed in isolation
before results are aggregated.

We employed our hair detection algorithm and
determined that the detection of hair in 2709 (%86)
images was acceptable. We divided the 2709 images
into gallery and probe images. The gallery consists
of a single image of each person taken in the neutral
position (face, light and no wearable artifacts). The
probe images consist of all the rest. Thus, on av-
erage 25 probe images of each subject are matched
against the 126-subjects gallery.

[ R [ Hairline [ Texture ] Length [ Surface |
T [ 102(14.9% | 19.6(2L.0)% | 3.4(3.9)% 1.9(2.5)%
2 14.2(20.0)% | 26.5(28.5)% | 5.9(6.8)% 3.3(4.1)%
3 | 18.4(25.1)% | 30.7(32.8)% | 8.2(9.4)% 4.6(5.8)%
4 | 21.4(28.6)% | 34.8(36.1)% | 10.6(11.9)% | 6.0(7.4)%
5 | 24.0(31.7)% | 37.6(38.5)% | 13.4(15.2)% | 7.4(9.2)%
6 | 26.1(33.6)% | 40.0(40.9)% | 15.6(17.5)% | 8.5(10.5)%
R [ Symmetry | Volume ]| Color [ Split |
I | 1.822)% | 2.9(3.6)% 85(11.5)% | 3.6(2.9) %
2 | 3.0(3.2)% | 5.7(6.4)% 12.0(15.5)% | 7.5(6.2)%
3 | 4.6(5.1)% | 82(9.1)% 14.7(18.3)% | 12.2(10.5)%
4 | 6.3(7.1)% | 10.5(11.8)% | 17.2(20.9)% | 14.8(13.5)%
5 | 7.5(8.4)% | 13.0(15.2)% | 19.4(23.7)% | 17.3(14.8)%
6 | 8.8(9.6)% | 15.2(17.5)% | 21.1(25.1)% | 20.0(16.7)%

Table 1: Correct identification using hairline, tex-
ture, length, surface area, symmetry, volume and
color, split location as a function of rank-R (in
parentheses the results are for the dataset excluding
the sun-glasses and scarve-warn images).

We pose the following classification task: for each
probe and each hair attribute rank the closest sub-
ject from the gallery. Table 1 displays the success
in matching probe and gallery (percentage wise) as
a function of how well the correct identification was
ranked. We consider only the top six ranked sub-
jects for each probe query. For example, the left
most column shows that about 26.1% of the probes
were ranked within the 6 top matches when the
hairline attribute was used, while 10.2% were iden-
tified correctly as the best ranked. The texture at-
tribute scored the best, with 19.6% of the subjects
matched successfully despite the significant light-
ing variations in these images. The attributes that
scored the least were volume, surface area, symme-
try, split and length. The length, volume, surface

and symmetry are closer in value for many subjects
(specifically, males with short hair). Hair splits
were observable or detectable for only a subset of
the dataset and therefore they were not helpful for
probes that lacked them. Since in many of the im-
ages the hair are partially covered we excluded all
images with sun-glasses or head scarves to deter-
mine how the identification performance changes.
Table 1 (numbers in parentheses) show slightly im-
proved identification performance for all hair at-
tributes.

We compare the human identification potential of
hair attributes to the well-known Eigenface, Prin-
cipal Component Analysis (PCA), approach [14].
The images were cropped, registered and warped
automatically so that the same inaccuracies affect-
ing the hair attribute identification affect the PCA-
based approach. We also obtained manually reg-
istered images of the same AR dataset from [9]
to evaluate the performance of ideal registration
of faces. Table 1 (right column) shows the per-
formance of PCA-based recognition on the whole
dataset for the manually registered images. The
performance is worse than the typical PCA perfor-
mance since this dataset is considerably more di-
verse in imaging and facial parameters. No similar
results are reported in [10] but the occlusion re-
sults reported in [10] appear close in value. The
second column from the right shows the identifica-
tion rates for our automatically registered face im-
ages. We observed inaccurate registration of images
of subjects wearing sun-glasses, scarves and highly
deformed faces during face expressions. Note that
several hair attributes showed comparable (for man-
ually registered PCA) or better (for automatically
registered PCA) performance with respect to the
Eigenface results on the full database.

Since hair attributes and PCA are independent,
we use the ranking of subjects based on their hair
attributes and PCA to compute a single ranking.
To aggregate the ranking of hair attributes, we
choose the 3 best ranked attributes for each probe.
For example, a probe P; matched to the gallery G;
leads to the hair attributes rank values ry, s, ..., TN
with respect to the complete gallery G (where N
is the number of hair attributes). We choose the
best three ranks out of these N and their average
v(i,j) is considered the degree of hair-match be-
tween P; and G hair. The average v(i, j) is aver-
aged with the PCA-based rank of the probe to pro-
vide an identification rank. This average is a vari-



[ R [ Auto. Reg. PCA-Hair | Manu. Reg. PCA-Hair ]| Hair [ Auto. Reg. PCA | Manu. Reg. PCA |
T [ 193(20.0% 29.0(40.0)% 17.923.2)% | 12.1(20.0% 24.1(35.8)%
2 | 25.3(36.1)% 38.0(48.7)% 25.4(31.6)% | 16.1(26.6)% 31.3(43.0)%
3 | 29.5(41.4)% 43.8(54.6)% 31.2(37.7)% | 18.9(31.0)% 36.1(47.9)%
4 | 32.3(44.4)% 48.2(58.7)% 34.9(41.5)% | 21.7(34.7)% 39.3(50.6)%
5 | 34.7(47.0)% 51.5(62.0)% 38.0(44.7)% | 23.8(36.8)% 43.1(53.9)%
6 | 36.8(49.1)% 55.0(64.7)% 41.2(47.6)% | 26.1(39.6)% 45.4(55.7)%

Table 2:

Correct identification using (from left to right): joint hair attributes and PCA of automatically

registered images, joint hair attributes and PCA of manually registered images, hair attributes alone, PCA
of automatically registered images, and PCA of manually registered images.

ation on the Highest Rank Classifier [11] that is an
effective method to combine classifier output. Ta-
ble 2 (parentheses) shows the recognition results for
correct identification ranks of 1,...,6 for the whole
dataset using the combined hair-PCA information
(where automatic registration of images for PCA is
used). The second column (from the left) shows the
results for hair and manually registered eigenface
images. The results show about 20-30% improve-
ment over the PCA based ranking given in Table
2 and improvement with respect to the hair-based
recognition only in the case of manually registered
images (third column from the right). Table 2 (left
column) shows the results for the dataset that ex-
cludes the images of subjects wearing sun-glasses
and scarves (clearly problematic for PCA) and it
shows clear improvement. In this case, the combi-
nation of hair and PCA surpassed the other identifi-
cation methods, achieving 49.1% and 64.7% correct
identification for automatic and manually registered
images. 4 Summary

A set of attributes of the head hair that can be
estimated from a single image was presented. Al-
gorithms and associated metrics that enable detec-
tion, representation and comparison of the hair of
different subjects were described. A large dataset
consisting of 524 subjects was used to illustrate the
qualitative performance of the algorithms. We also
used a set of over 3100 images taken from the AR,
dataset [9] to quantitatively assess the consistency,
viability and performance of the algorithms under
significant variations of hair appearance in the task
of human identification. An approach for combin-
ing PCA and hair classification has been proposed.
A rank-based analysis of hair attributes and PCA
has shown that identification can be improved even
under challenging imaging conditions.
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