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Abstract 

This paper presents an approach for view-based recog- 
nition of gestures. The approach is based on representing 
each gesture as a sequence of learned body poses. The ges- 
tures are recognized through a probabilistic@amework for 
matching these body poses ana‘for imposing temporal con- 
strains between dzfferent poses. Matching individual poses 
to image data is pegormed using a probabilistic formula- 
tion for edge matching to obtain a likelihood measurement 
for each individual pose. The paper introduces a weighted 
matching scheme for edge templates that emphasize dis- 
criminating features in the matching. The weighting does 
not require establishing correspondences between the dg- 
ferent pose models. The probabilistic framework also im- 
poses temporal constrains between different pose through a 
learned Hidden Markov Model (HMM) for each gesture. 

1 Introduction 
The recognition of human gestures has many applica- 

tions in human computer interaction, virtual reality and in 
robotics. Different approaches have been proposed recently 
for gesture recognition. These approaches can be classified 
into three major categories: model based, appearance based 
and motion based. Model based approaches focus on re- 
covering three-dimensional model parameters of articulated 
body parts [13,4]. Appearance based approaches uses two 
dimensional information such as gray scale images or body 
silhouettes and edges. In contrast, motion based approaches 
attempt to recognize the gesture directly from the motion 
without any structural information about the physical body, 
for example [ 13. In all these approaches, the temporal prop- 
erties of the gesture are typically handled using Dynamic 
Time Warping (DTW) or statistically using Hidden Markov 
Models (HMM). 

Our objective is to recognize arm gestures performed by 
a human standing at a distance from the camera. This might 
be to operate a robot or a vehicle driven by a robot or gen- 

erally to control an environment using gestures. This pa- 
per presents an approach for view-based recognition of ges- 
tures. The approach is based on representing each gesture 
as a sequence of learned body poses through a probabilistic 
framework for matching these body poses to the the image 
data. The probabilistic framework also imposes temporal 
constrains between different pose through a learned Hid- 
den Markov Model (HMM) of each gesture. Matching indi- 
vidual poses is performed using a probabilishc formulation 
for Chamfer matching to obtain a likelihood measurement 
for each individual pose. The paper introduces a weighted 
matching scheme for edge templates that emphasize dis- 
criminating features in the matching. The weighting does 
not require establishing correspondences between the dif- 
ferent pose models. 

The paper is organized as follow. Section 2 gwes an 
overview of the proposed system. Section 3 presents an 
overview about the problem of edge matching. Section 4 
presents the proposed pose classification approach. Sec- 
tion 5 descries the hidden Markov model used for gesture 
recognition. Section 6 illustrates some experimental results. 

2 System Overview 
Figure 1 describes an overview of the proposed system. 

The system consists of three modules: Training, Segmenta- 
tion and Tracking, and Gesture Recognition. The training 
module leams models for body poses. It also learns tem- 
poral models of each individual gesture as a sequence of 
the learned body poses through a Hidden Markov Model 
(HMM). Finally the training module leams models of the 
activities, i.e, the different gesture that can be recognized 
and their temporal relations. The segmentation and tracking 
module continuously segment and trackthe person perform- 
ing the gesture from the rest of the background. The seg- 
mentation from the background is performed using coarse 
range data through a series of plane fitting to the range data 
and a rule based system to determine which plane in the 
range corresponds to the person. The range data is regs- 
tered to the video data, therefore locating the person in the 
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Figure 1. System Overview 
range image locates the person in the video data. Since the 
segmentation is performed using a very coarse range data, 
the output of this module is just the location of the person 
in the image as a rectangle. The quality of the range data, in 
terms of accuracy, is not enough to provide fine silhouette 
segmentation or to do gesture recognition. For an example 
of the quality of the result of the segmentation, see figure 7. 
The system is supposed to be mounted on a moving vehi- 
cle; therefore the person is continuously tracked in both the 
range and the video to provide the context information neo  
essary for the recognition module. 

The gesture recognition module uses only the video data. 
It matches learned silhouette models through coarse to fine 
search around the person location, provided by the segmen- 
tation and tracking module, to register the leamed poses 
to the video data. The recognition module, then, matches 
all learned pose models to each new image to obtain pose 
probability likelihoods. The gesture classification part uses 
the learned HMM of each gesture to impose temporal con- 
strains on the body poses and therefore determine the ges- 
ture class. The gesture recognition module also uses an 
HMM activity model to determine the beginning and the 
end of each gesture (gesture segmentation). 

3 Edge Matching: Background 
The problem of matching a feature template correspond- 

ing to an object to an image is a classical problem in com- 
puter vision with many applications for object detection, 
recognition and tracking. The objective is to match a fea- 
ture template, T, which is a finite set of feature points 
T =  {tl.t. . .--t, ,}toanimage. 

This problem is hard for many reasons. The Occurrence 
of the object in the image undergoes different geometric 

transformation and therefore the matching algorithm has to 
compensate for that by searching a transformation space to 
achieve the best match. Also, the image typically contains 
other features fiom the cluttered background, other objects 
in the scene and noise. The object itself might be occluded 
or some of the features are not detected and therefore the 
matching algorithm has to be robust to these missing fea- 
tures. The problem becomes even harder if the object is 
non-rigid and/or contains articulated parts, for example, the 
case of humans which is considered in this paper. 

Figure 2. Distance Transform 

The distance transform, DT, has been used in matching 
edge feature (and other feature) templates. Given a set of 
features, F, detected in an image I, the distance transform, 
CIF (z), at pixel 3, is defined to be the distance to the nearest 
feature point in the image, i.e., 

where p is a metric. Typically the Euclidean distance is used 
for themetric p and in this case the function cI(x:) defines the 
Voronoi surface of F [6].  The distance lransform is defined 
with respect to a set of binary feature of the same type, e.g., 
edges or comers. 

Given a template T = {tl .  t z . .  .. t,&], where t i 's are the 
locations of the template features transformed into the im- 
age space through translation, rotation, scaling or other ge- 
ometric transformations, the matching can be achieved by 
averaging the distance transform values at each transformed 
template feature location t,, i.e., the matching D(T.F) 
score is 

1 
11 , 

D(T. F:) = - d F ( t i )  (1) 
7 

This form of matching is called Chamfer matching and 
the distance D(T. F j  is called the Chamfer distance. The 
smaller this matching score, the better the match and an 
ideal match will have the value 0 where the template ex- 
actly lie over its corresponding image location. Chamfer 
distance has been used extensively in object detection, for 
example in [3]. Note that Chamfer matching is asymmetric 
(model to image) so additional features in the image will 
not contribute to the matching. Figure 2 shows an example 
of an image and the detected edge features and the distance 
transformed image according to these features. 

In [2] the matching was generalized to include multiple 
feature types, (for example, oriented edges) by matching 
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Figure 3. Example body poses from two different Gesture 

each individual feature template with its corresponding dis- 
tance transformed image and combining the results. Also 
the matching was generalized in [Z, 31 to match multiple 
templates through a hierarchical template structure. 

Another metric of similarity between the transformed 
template T and the image features F is the direct Hausdorff 
distance [6] h (7'. F') defined by 

The function h(T. F )  simply finds the nearest point in F 
for each template point t and thereafter h(T. F )  defines the 
faahest of these distances. In other words, h(T. F:) defines 
the most mismatch in the best match between the template 
T and the image features F. Therefore, the smaller the dis- 
tance h(T. F:) the better the match. Obviously, this distance 
is also not symmetric. Direct HausdorlT distance can be 
computed using the distance transform where h(T? F )  can 
be rewritten in terms of c ~ F ( . )  as 

Since Hausdorff distance is defined based on the worst 
mismatch, it is very sensitive to outliers. Any missing fea- 
ture in the image (occluded or not detected) can affect the 
distance dramatically. Therefore a more robust measure is 
introduced in [6] and is called the partial Hausdorffmeasure 
and is defined by 

Several extensions have been proposed to matching us- 
ing Hausdorffdistance. This includes, but are not limited to, 
matching oriented edge pixels [IO]. Also a probabilistic for- 
mulation of Hausdorffmatching was introduced in [9, 113. 
Another extension is the use of Eigenspaces to approxiinate 
the Hausdorffdistance as was introduced in [7,5] 

4 Pose Classification 
4.1 Pose Likelihood 

We represent each gesture as a sequence of body poses. 
The temporal relation between these body poses is enforced 

Figure 4. Pose template registered to an im- 
age 

by a hidden Markov model, as will be presented in sec- 
tion 5.  This section focuses on matching individual body 
poses. The objective is to evaluated1 different body pose 
models with respect to each new M e  in order to obtain a 
probability estimate for each of these poses. 

= {Sk..R = 1 .: - Af} be the set of all learned 
body poses for all the gestures to be recognized. Each pose 
Sk is represented as an edge template, i.e., each pose is 
represented as a finite set of edge feature locations 

Let 

where n? ' is the number of edge features for pose template 
I;. Figure 3 shows example pose templates for two dif- 
ferent gestures. All the poses are registered to each other 
during the leaming so registering one pose to any new im- 
age will therefore register the rest of the poses. R e w r i n g  
these poses to the images is done while the person is not 
performing any gesture (idle). In this case the matching is 
performed using an idle pose (shown in figure 3, first pose 
on top) through a coarse to line search. Figure 4 shows the 
registered poses to a new h e .  

At each new image, I, it is desired to find a probabilis- 
tic matching score for each pose. Let clf(s) be the dis- 
tance transformed image given the set of edge features, F ,  
detected at image I. For each edge feature, sf,  in pose 
model X k ,  the measurement Df = d ~ ( . r f )  is the distance 
to the nearest edge feature in the image. A perfect model 
to image match will have 0: = 0 for all model edge fea- 
tures. Let's consider the random variable associated with 
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this distance measurement, and let the associated probabil- 
ity density function (PDF) be&. We assume that these ran- 
dom variable are independent. This assumption was used 
in [9, 111 based on the results obtained in [lo]. Therefore, 
the likelihood function (the probability of the observation 
given the model -Y';) can be defined as the product of these 
PDFs as 

mk 
L(S"') = P r ( 1 J S k j  = n p : ( D : )  

i = Z l  

Since different templates have different numbers of fea- 
tures, this likelihood equation needs to be normalized using 
the number of features in each mode1,in". Taking the loga- 
rithm of this equation we obtain the log-likelihood function 

. in' 

If all the poses are assumed to be equiprobable, then the 
model probability given the observation is proportion to the 
likelihood, i.e., P(S"'(1) x P(Z1-Y"). Therefore we can 
use this likelihood function to evaluate different models. 

The PDF yp for the &stance between model features 
and nearest image feature location is defined for each fea- 
ture i in each pose model k. We use a PDF of the form 

The scale parameter of is defined for each pose k and each 
feature i. The motivation behind this is that different vari- 
ations (or uncertainty) are expected at difFerent model fea- 
tures; for example, the edges corresponding to the hand are 
expected to have more variations in location than the upper 
arm or the shoulder location. These variations are learned 
during the leaming of the pose models. Since the distance 
D can become arbitrary large, the probability can become 
very small  and therefore the constant ('1 is used as a lower 
bound on the probability. This makes the likelihood fimc- 
tion robust to outliers. A similar PDF was used in [9] but 
with the same scale variable u for all the features. 

This probabilistic formulation was fkst introduced in [9] 
and was used in a Hausdorffmatching context to find the 
best transformation of an edge template using maximum 
likelihood estimation. Equation 2 represents a probabilis- 
tic formulation of Chamfer matching as defined in equa- 
tion l. We use this probabilistic formulation to evaluate the 
observation likelihood given each gesture state as will be 
described in section 5 

4.2 weighted matching 
Our objective is to match multiple pose templates to the 

same image location in order to evaluate the likelihood of 

the observation given each of these poses. Typically, the 
different pose templates are similar in some parts and dif- 
ferent in another parts in the templates. For example, the 
head, torso and bottom parts of the body are likely to be 
similar in different pose templates, while articulated body 
parts that are involved in the gesture, such as the arm, will 
be at different positions at different pose templates. For ex- 
ample, see figure 4. Since the articulated part, such as the 
arm, is represented by a small number of features with re- 
spect to the whole pose templates, the matching is likely 
to be biased by the major body parts. Instead, it is desired 
to make the matching biased more by articulated parts 111- 
volved in performing the gesture since these parts will be 
more discriminating between different poses templates. 

ights are assigned to 
different feature points template. Therefore 
each pose template, S", is represented as a set of feature 
locations as weU as a set of weights, {U*! .  U$.  . . . . ujfnb.>, 
corresponding to each feature where c2: U*! = 1. The 
likelihood equation 2 is then modified to be a weighted one 

To achieve this goal 

+n 

logL(S'  = U*: logp~(D: ) (3) 
?=l 

In our case, the set of all recognized poses does not have 
a common correspondence b e .  For example, some fea- 
tures in one pose might not pave corresponding features in 
another poses. Also we do not restrict the pose templates to 
have the same number of features. Therefore we drive the 
weights with respect to the image locations. 

Let S be the set of all features in all regstered poses in 
the traiIung data, i.e., 

s = USL = {z,,r2.....r,nl 

where each I, is the image location of an edge feature. 
Given this sample of edge feature locations, the edge proba- 
bility distribution f ( j i  (the probability to see an edge at cer- 
tainimage location, y) can be estimated using kernel density 
estimation [14] as 

L 

Where is a kernel function with a scale variable h.. We 
used a Gaussian kernel K,,(tj = &c-1/a(kr2  for this 
probability estimation. 

The weight assigned to each feature point is based on 
the information this feature provides. Given the estimated 
edge Probability distribution, f(~'), at any image pixel, y, 
the weight for a certain feature ,i at a certain pose k is the 
ratio of the information given by this feature to the total 

766 



information by that pose, i.e., 

5 'Gesture classification 
5.1 HMMOverview 

An HMM consists of a set S of A- distinct states, S = 
(.si. .sz. . . . . .sl,-}, representing a Markov stochastic process. 
A stochastic process is called a Markov process if the con- 
ditional probability of the current event given all the past 
events depends only on the jth most recent events. In par- 
ticular, if the current event depends only on the previous 
event then this is called a first order Markov process and 
the HMM is called a first order HMM. The HMM is called 
hidden if the stochastic variable associated with the states 
is not observable. Instead, the observation is a probabilistic 
function of the state. For an overview of HMMs and their 
applications in speech recognition refer to [ 121. We use the 
same notation as in this paper. 

HMMs have been used extensively in gesture recogni- 
tion. They were used in [15] for American Sign Language 
recognition (ASL) by tracking the hands based on color. 
In [17,16] HMh4's were also used for ASL based on shape 
and motion parameters. In [SI HMMs were used to track 
head gestures. In [18] a parametric HMM was introduced 
to model paramebic gestures. 

Generally, an HMM is dehed as the states, S, the tran- 
sition Probabilities between the states, -4 = {cij,} where 
CL;, = P[qr I = .s,lq/ = s i ]  where q~ is the state at time t, 
and the initial state distribution 'ii where 'iif = P[ql = .s i ] .  

Finally, the observation probability given the states b, (0') = 
P( 0 I s  j:, . 
5.2 GestureHMM 

Figure 5. Left-Right HMM 
We represent each gesture 9 by a set of poses Py = 

{A-'. A. = 1.. . .AI} and an HMh4, Ag, where the hidden 
states correspond to the progress of the gesture with time. 
The HMM elements are as follows: 

1 A set of A- states ,S = {SI. SJ. . . . . slv). We use q/ 
to denote the state at tune t. Note that the number of 
states is not necessarily the same as the number of pose 
models, J I ,  i.e., each state does not necessarily repre- 
sent one pose. Instead, one state can represent a mix- 
ture of pose models. 

2. The state transition probabilities -4 = { U , , }  where 
CL,, = P[q/ 1 = q,Iy/ = .s,] Vi.) = 1 .  .:Y. we use 
a left-right model or a Bakis model [12] as in figure 5 
since the progress of the gesture is always forward in 
time. 

3. The initial state distribution ii where iij = P[ql = 

4. The probability of each pose Si(. given the states, C = 

.s .] V j  = 1 . . . i\?, 

{cjk =P(S'l .sj)  V j  = l..-iY.~k= I . . . A I }  

The actual observation 01 is the detected edge features 
at each new h m e ,  which is a probabilistic function of the 
current state of the gesture. This probabilistic fimction is 
defined using the set of recognized poses I',. That is, the 
observation probability given the state can be written as 

:II 

b j ( O / )  = P ( 0 /  I.sj) = .E P(0 l  l-Y")P(-Y"I.sj:) 

Given the definition of the variables C above, this can be 
rewritten as 

$=I 

.+.I 
bj(0l:)  = P(O/I.sj:) = CjkP(0lI-Y":) 

k=l 

We can think of the set of poses P, as a set of discrete 
symbols or an alphabet that is being emitted by the differ- 
ent states, but the actual observation is a probabilistic fmc- 
tion of these symbols based on the mixture dehed by the 
variables G. The observation probabilities given the poses, 
P(O/I-Yk), are obtained using the likelihood equations 2 
and 3 as was described in section 4 

Given a set of observations 0 = 0 1 0 2 .  . . . ~ OT and 
given a set of HMM models As corresponding to differ- 
ent gesture, the objective is to determine the probability of 
this observation sequence given each of the models, i.e., 
P(0lAo:)Vg. This is a traditional problem for HMM and 
can be solved efficiently through a procedure called the 
Forward-Backward procedure [12]. This procedure defines 
a set of forward variables n I ( i )  = I'(010, . . .Ol ~ q, = 
$lXj which can be updated recursively at each time step 
by: 

Q/ I I($ = CL/ ( i : ) c ~ + j  b j ( O /  I I:), I 5 t 5 T - 1 ] 
where al(i:) = w i b i ( O 1 ) .  Given these forward variables, 
the observation likelihood can be calculated as 

lY 

P(o~A:) = aT(i)  
i=l 
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Figure 6. Gesture classification results 

6 Experimental Results 
The proposed approach was used to classify eight arm 

gestures. Basically, the eight recognized gestures are simi- 
lar to the ones shown in figure 4, performed with both arms, 
in upward motion and downward motion. Figure 7 shows 
the segmentation results obtained from the range data. The 
image is color coded so that each fitted plane has a different 
graylevel and the segmented person is labeled white. Fig- 
ure 8 shows some pose classification results for different 
people. The figures shows the pose with the highest likeli- 
hood score overlaid over the original image. 

Figure 7. Segmentation result 

Figure 6 shows the gesture likelihood probabilities for 
the eight gesture classes. As can be noticed fiom the graphs, 
All the gestures were close in likelihood at the beginning of 
the action but as the gesture progresses with time, the like- 
lihood of the right gesture increases, and the the likelihood 
of the other gesture decreases as a result of the temporal 
constrains imposed by the HMM for each gesture. 

7 Conclusions 
The paper presented an approach for view-based arm 

gesture recognition based on a probabilistic fiamework for 
pose matching. Any gesture is represented by a sequence of 

learned body poses where the temporal relation is learned 
through a Hidden Markov Model. Individual poses are 
matched to the image data through a probabilistic formu- 
lation of Chamfer distance that yields a probability likeli- 
hood estimation for each pose that is feeded to the HMM 
to perForm the gesture recognition. A weighted matching 
scheme was introduced in the paper to enable matching 
multiple poses in a way that emphasizes the discriminating 
features for each pose. Experimental results were shown 
where the proposed approach was used to recognize eight 
different hand gestures. 
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