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Abstract

Image “ appearance’ may change over time due to
a variety of causes such as 1) object or camera mo-
tion; 2) generic photometric events including varia-
tionsin illumination (e.g. shadows) and specular re-
flections; and 3) “iconic changes’ which are specific
to the objects being viewed and i nclude complex occlu-
sion events and changes in the material properties of
theabjects. We proposea general framework for repre-
sentingand recovering these* appearancechanges’ in
an image sequence asa “ mixture” of different causes.
The approach generalizes previous work on optical
flowto providearicher description of imageeventsand
more reliabl e estimates of image motion.

1 Introduction

AsGibson noted, theworldismade up of surfacesthat “flow
or undergo stretching, squeezing, bending, and breaking in
ways of enormous mechanical complexity” ([9], page 15).
These events result in awide variety of changesin the*ap-
pearance’” of objects in a scene.  While motion and illu-
mination changes are examples of common scene events
that resultin appearance change, numerousother eventsoc-
cur in nature that cause changes in appearance. For exam-
ple, the color of objects can change due to chemical pro-
(eg., oxidation), objects can change state (eg., evap-
oration, dissolving), or objects can undergo radica changes
in structure (eg., exploding, tearing, rupturing, boiling). In
this paper we formulate a general framework for represent-
ing appearance changes such as these. 1n so doing we have
three primary goals. First, wewishto “explain” appearance
changesin an image sequence as resulting from a“mixture”
of causes. Second, we wish to locate where particular types
of appearance change are taking place in an image. And,
third, we want to provide aframework that generalizes pre-
viouswork on motion estimation.

We propose four generative models to “explain” the
classes of appearance change illustrated in Figure 1. A
changein “form” is modeled as the motion of pixelsin one
image to those in the next image. Animage a time¢ + 1
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Figure 1: Examples of appearance change.

can be explained by warping the image at time ¢ using this
image motion.

[llumination variations (Figure 1, upper right), may
be global, occurring throughout the entire image due to
changes in the illuminant, or local as the result of shadow-
ing. Here we model illumination change as a smooth func-
tion that amplifies/attenuates image contrast. By compari-
son, specul ar reflections (Figure 1, lower right) aretypically
local and can be modeled, inthesimplest case, asanear sat-
uration of image intensity.

The fourth class of events considered in this paper is
iconic change [6]. We use the word “iconic” to indicate
changes that are “pictorial.” These are systematic changes
inimage appearance that are not readily explained by physi-
cal modelsof motion, illumination, or specularity. A simple
example isthe blinking of the eye in Figure 1 (lower left).
Examples of physical phenomena that give rise to iconic
change include occlusion, disocclusion, changes in surface
materials, and motionsof non-rigidobjects. Inthispaper we
consider i conic changes to be object specific and we “learn”
models of the the iconic structure for particular objects.

These different types of appearance change commonly
occur together with natural objects; for example, with artic-
ulated human motion or the textural motion of plants, flags,
water, etc. We employ a probabilistic mixture moddl for-
mulation [14] to recover the various types of appearance
change and to perform a soft assignment, or classification,
of pixelsto causes. Thisisillustratedin Figure2. In natural
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Figure 2: Object specific appearance change between aim-

ages attimest and ¢ + 1 ismodeled as a mixture of motion
and iconic change (see text).

Weights

speech the appearance change of a mouth between frames
can be great due to the appearance/disappearance of the
teeth, tongue, and mouth cavity. While changes around the
mouth can be model ed by asmooth deformation (imaget+ 1
warped to approximate imaget) the large disocclusions are
best modeled as an iconic change (taken here to be a lin-
ear combination of learned basis images). We use the EM-
algorithm [14] to iteratively compute maximum likelihood
estimates for the deformation and iconic model parameters
aswell asthe posterior probabilitiesthat pixelsat timet are
explained by each of the causes. These probabilitiesare the
“weights’ in Figure 2 and they provide a soft assignment of
pixelsto causes.

Below we describe this mixture-model formulation and
some simpl e appearance-change model s that generalize the
notion of brightness constancy used in estimating optical
flow.

2 Context and Previous Work

Previous work in image sequence analysis has focused on
the measurement of optica flow using the brightness con-
stancy assumption. The assumption states that the image
brightness7(Z, t) at apixd ¥ = [z, y] andtimet isasimple
deformation of theimage at time¢ + 1:

I(Z,t) = I(# —4(2), t+ 1), (1)
where (%) = (u(Z), v(¥)) represents the horizontal and
vertical displacement of the pixel. This model isappliedin
image patches using regression techniques or locally using
regularizationtechniques. The recovered image motion can
be used to “warp” oneimage towards the other.

Whileoptical flow isan important type of image appear-
ance change it iswell known that it does not capture all the
important image events. Onefocus of recent work in motion

estimationistomakeit “robust” in the presence of these un-
model ed changesin appearance (ie. violationsof the bright-
ness constancy assumption) [3]. The approach hereisquite
different in that we explicitly model many of these events
and hence extend the notion of “constancy” to more com-
plex types of appearance change.

Onemotivationfor thisisour interest in recogni zing com-
plex non-rigidand articulated motions, such ashuman facial
expressions. Previouswork in thisarea has focused on im-
age motion of face regions such as the mouth [5]. But im-
age motion alone does not capture appearance changes such
asthe systemati c appearance/di sappearance of theteeth and
tongue during speech and facial expressions. For machine
recognition we would like to be able to model these inten-
Sity variations.

Our framework extends several previous approaches that
generalize the brightness constancy assumption. Mukawa
[15] extended the brightness constancy assumption to allow
illumination changes that are a smoothly varying function
of the image brightness. In arelated paper, Negahdaripour
and Yu [17] proposed a general linear brightness constraint

I(Z,t) = m(Z ) (£ —d4(@),t+ 1) + (&, t) (2
wherem(#,t) and ¢(Z, t) are used to account for multiplica-
tive and additive deviations from brightness constancy and
are assumed to be constant within an image region.

Another generalization of brightness constancy was pro-
posed by Nastar et al. [16]. Treating the image as a sur-
facein 3D XY I-space, they proposed aphysi cally-based ap-
proach for finding the deformation from an XY surface at
time ¢ to the XY|I surface at ¢ + 1. Thisalows for a gen-
eral class of smooth deformations between frames, includ-
ing both multiplicativeand additive changesto intensity, as
does the genera constraint in (2).

A number of authors have proposed more general linear
models of image brightness [2, 10, 11, 18]. For example,
Hager and Belhumeur [10] use principa component analy-
sis(PCA) tofind aset of orthogonal basisimages, { B; (%)},
that spans the ensemble of images of an object under awide
variety of illuminant directions. They constrain deviations
from brightness constancy to lie in the subspace of illumi-
nation variations, giving the constraint

I(Z, 1) = I(Z—a(&;m), t+1) + ijBj(f), ©)
j=1

where #(#; ) is a parameterized (affine) model of image
motion. The authors estimate the motion parameters m =
[my,...,mg] and the subspace parameters b;...b,. Hal-
linan [11] proposed a modd that included both a model
of illumination variation and a learned deformation model
(EigenWarps). These approaches are aso related to the



eigentracking work of Black and Jepson [4] in which sub-
space constrai ntsare used to hel p account for i conic changes
in appearance while an object is being tracked.

In[6] we extended these genera linear brightnessmodels
by allowing spatially varying explanationsfor pixels

I(#,t) = wo(¥)Imotion(¥) + wi(Z)!iconic(Z)-
The terms w; (%) are spatialy varying “weights’ between
zero and onethat indicate the extent to which apixel can be
explained, or modeled, by the individual causes.

The approach presented here casts the above modelsin a
probabilistic mixture model framework. The models above
can be thought of as different generative models that can
be used to construct or explain an image; in a sense, they
embody different “constancy” assumptions. Unlike the ap-
proaches above, however, the mixture model framework
factors appearance change into multiple causes and per-
forms a soft assignment of pixelsto the different models

3 MixtureModd of Appearance Change

Mixture models [14] have been used previously in motion
analysis for recovering multiple motions within an image
region [1, 13, 19]. The basic goals are to estimate the pa-
rameters of a set of models given data generated by multi-
ple causes and to assign data to the estimated models. Here
we use thisideato account for co-occurring types of appear-
ance change. Within someimage region i we may expect a
variety of appearance changesto take place between frames.

In particular, we assume that a pixel 7(#,t) at location
# € R andtimet is generated, or explained, by one of n
causes I, i = 1,...,n. The causes, I¢,(%,t;d;), can
be thought of as overlapping “layers’ and are simply im-
ages that are generated given some parameters @;. We will
consider four causes below namely: motion (I, ), illumina-
tion variations (1), specular reflections (I, ), and iconic
changes (/¢,). Given these causes, the probability of ob-
serving theimage 7(Z, ¢) isthen

n
pUI(E DG, Gny o, o0) = Y mipi(I(E, 1)]d, 07)
i=1

where the 7; are mixture proportions [14] which we take
to be 1/n for each i indicating that each cause is equaly
likely. The &; are parameters of model /-, for which we
seek amaximum likelihood estimate and the o; are scale pa-
rameters. Here we make the very crude assumption that the
causes are independent.

In contrast to the traditional mixture of Gaussians formu-
lation, the component probabilities, p;(I(Z,t)|d;, 0;), are
defined to be
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Figure 3: Affine flow basis set.

Iy Ly L
Figure 4: Linear illumination-change basis images.

This is a robust likelihood function (Figure 5) the tails of
which fall off more sharply than those of anormal distribu-
tion. Thisreflects our expectationthat theresiduals I(#,¢)—
I, (%,t; &;) contain outliers[12].

Below we define the individua sources of appearance
change.

Motion: Moation is a particularly important type of ap-
pearance change that is modeled by

Thisrepresentstheimageat timet + 1 warped by aflow field
a(Z; m). We use aparametric description of optical flow in
which the motion in an image region is modeled as a linear
combination of k basis flow fields A (z):

k
() = Y my M;(#). 4

ji=1

where @, = m = [my, ..., my] isthevector of parameters
to be estimated. An &ffine basis set, shown in Figure 3, is
used for the experiments in Section 5.

[llumination Variations. Illumination changes may be
global as aresult of changes in the illuminant, or local as
theresult of shadows cast by objectsin the scene. The mix-
ture formulation alows both of these types of variation to
be model ed.

We adopt a simple model of illumination variation

Te, (#,4;1) = L(# ) [(F — (& m), t+1),  (5)

which statesthat the illumination changeisascaled version
of the motion-compensated image at timet + 1. When esti-
mating the parameters a», = ['we assume that the motion @
isknown and fixed.

Wetake L(Z; () to be aparametric model, expressed as a
weighted sum of basis images. For example, in the case of
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Figure5: A robust likelihood p; and + (thederivativeof the
log likelihood).

linear spatial variation, L isgiven by
3
LED = b+ bz —2) +ls(y—ye) = Y1 Li(@)

i=1

where (., y. ) isthecenter of therelevant imageregion, [=
[l1, 12, l5] are the model parameters, and L;(#) denote the
basisimages, likethose for the linear model in Figure 4.

Specularity Model:  Specularities are typically loca and
result in near saturation of image brightness. While more
sophi sticated model sof specularitiesmay beformul ated, we
have experimented with a simple model which works well
in practice:
3

Ie,(%,6;5) = si+so(z—xo)+s3(y—ye) = Y _ si Si(#)

i=1
where S; arethesame linear basisimagesasin Figure4 and
a3 = §.
Iconic Change: In addition to the generic types of ap-
pearance change above, there areimage appearance changes
that are specific to particular objects or scenes. Systematic
changes in appearance exhibit spatial or tempora structure
that can be modeled and used to help explain appearance
changes in image sequences. Recall the example of human
mouthsin Figure 2.

As with the models above, we use a parametric model
of iconic change. However, here we learn the appropriate
model by constructing alinear, parametric model of thein-
dividua frames of atrainingimage sequence using principal
component analysis. Thisisdescribed in Section 6; for now
it issufficient to think of theiconic model, likethe specular-
ity model, as alinear combination of basisimages A;

q
I, (Z,t; d) ZazAz (6)
i=1
wheredy = @ = [aa, .. ., a,] isthe vector of scalar values
to be estimated.

4 EM-Algorithm

We seek a maximum likelihood estimate of the parameters
ay, ..., o, and asoft assignment of pixelsto models. If the

parameters of the models are known, then we can compute
the posterior probability, w;(Z, o;), that pixel # belongsto
cause i. Thisisgiven by [14]

w(i" 0,') _ p([(f )|O_ZZ’O-Z) )
ST i (L 1)]d;, o)

These ownership weights force every pixel to be explained
by some combination of the different causes. Asthe s go
to zero, the likelihood function approaches a delta function
hence, for small values of #, the weights will tend towards
zero or one.

The maximum likelihood estimate [ 14] of the parameters
is defined in terms of these ownership weights and can be
shown to satisfy

33 o)

xER i=1

(")

log Pz( ($’t)|0_2i’0'i) =0 (8)

Whereﬁlog pi(I(f,t)|&i, UZ)/a&Z =

VUG ) — e, 1580, 00 5 To,(F 1), (9
a;
and where
—4r
U(r, o) = o2 4 2 (10)

isarobust influencefunction[12] (Figure5) that reducesthe
effect of “outliers’ on the maximum likelihood estimate.

In the case of mixtures of Gaussian densities, the param-
eters can be computed in closed form. In the case of the ro-
bust likelihood function we incrementally compute the &,
satisfying (8). Briefly, we replace &; with &; + é&; where
8&; 1s an incremental update. We approximate (8) by its
first order Taylor expansion, simplify, and solvefor é&;. We
then update &; — &; + 6&; and repeat until convergence.

The EM agorithm alternates between solving for the
weights given an estimate of the /-, (the Expectation step),
and then updating the parameters with theweightshel dfixed
(the Maximization step). A continuation method is used to
lower the value of & during the optimization to help avoid
local maxima. For all the experimentsin thispaper thevalue
of o; began a 45.0 and was lowered by a factor of (.95
at each iteration of the optimization to a minimum of 10.0.
These same values of o were used for all the models. The
algorithm is embedded within a coarse-to-fine process that
first estimates parameters at a coarse spatia resolution and
then updates them at successively finer resolutions.

Asin [13] we can add an explicit “outlier layer” with a
fixed likelihood
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Figure 6: I1lumination Experiment (cast shadow of a hand).

Thisterm is used only in the normalization in Equation (7)
which is performed over i = 0,...,n. Residua erors
greater than 2.50 will have weights lower than the outlier
layer and which will be reduced further by the normaliza-
tion.

5 Generic Appearance Change

This section presents examples of generic appearance chan-
ges that are common in natural scenes, namely, motion, il-
[umination variations, and specul arities.

5.1 Shadows

Wefirst consider a mixture of motion and illuminationvari-
ation (Figure 6). In this experiment we use a mixture of
just two models: the affine motion model (/) and thelin-
ear illumination model (/,). We estimate the ownership
weights w1 (#) and w,(¥) that assign pixels to the models
and the motion parameters @; and illumination parameters
a5 asdescribed in the previous section. A three level pyra-
mid is used in the coarse-to-fine estimation and the motion
is computed using the affine model presented in Section 3.

The appearance variation between Figures 6a and b
includes both global motion and an illumination change
caused by a shadow of a hand in frame ¢ + 1. The esti-
mated motion field (Figure 6¢ ) contains some expansion as
the background surface moved towardsthe camera. Figures
6e and f show the weight images w, (Z) and w4 (%) inwhich
the shadow region of the hand is clearly visible. The mo-
tion weights wy (#) are near 1 (white) when the appearance
change is captured by motion alone. When thereisillumi-
nation change aswell as motion, theweightsw, (#) are near
0 (black). The gray regionsindicate weightsnear 0.5 which
are equally well described by the two models.

We can produce a “ stabilized” image using the weights:

Istapie(Z) = wi(F) e, (F,;01) + wa(@) e, (T, 4 d).

HOLILSO08 HOL111508
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Figure 7: Specularity Experiment (amoving stapler).

The stabilized imageisshown in Figure 6d; notethe shadow
has been removed and the image is visualy similar to
I(Z,1).

The illumination model only accounts for a globally
linear illumination change while the actual shadow fades
smoothly at the edges of the hand. To account for local vari-
ationsin illumination one could replace the linear moddl L
with aregularized model of the illumination variation (see
[19] for regularization in a mixture-model framework).

5.2 Specularities

Consider the example in Figure 7 in which a stapler with
a prominent specularity on the metal plate is moved. We
model this situation using a mixture of motion (/¢,) and
specularity (I,) models. This simplified model of specu-
larities assumes that some regions of theimage at timet can
be modeled asawarp of theimage at time¢ + 1 while others
are best modeled as alinear brightness function.

A four level pyramid was employed to capture the large
motion between frames, other parameters remained un-
changed. The estimated flow field is shown in Figure 7c.
The stabilized image, using motion and the estimated lin-
ear brightness model is shown in Figure 7d. Note how the
weights in Figures 7e and f are near zero for the motion
model where the specularity changes significantly. The re-
gion of specularity in the lower right corner of the meta
plateissimilar in both frames and henceis*” shared” by both
models.

6 Experiments: Iconic Change

Unlike the generic illumination and reflection events in
the previous section, here we consider image appearance
changesthat are specific to particul ar objectsor scenes. First
we show how parameterized models of image motion and
iconic structure can belearned from examples. We then use



Figure8: Exampleframes from training sequences of facial
expressions (anger, joy, sadness).

these in our mixture model framework to explain motion
and iconic change in human mouths.

6.1 Learned |conic Mod€

To capturetheiconic change in domain-specific cases, such
as the mouths in Figure 8, we construct a low-dimensional
model of the p images in the training set using principal
component analysis (PCA). For each s = n x m training
imagewe construct a1D column vector by scanning the pix-
elsin the standard lexicographic order. Each 1D vector be-
comes acolumninan s x p matrix B. We assume that the
number of trainingimages, p, islessthan the number of pix-
els, s, and we use singular value decomposition (SVD) to
decompose B as

B = AX. V] . (12)

Here, A isan orthogona matrix of size s x s, the columns
of which represent the principal component directionsin the
training set. X, is a diagona matrix with singular values
A1, Az, ..., A, sorted in decreasing order along the diago-
nal.

Becausethereisasignificant amount of redundancy inthe
training sequence, the rank of B will be much smaller than
p. Thusif we expressthe i** column of A asa2D basisim-
age A;(¥), thenwe can approximateimages likethoseinthe
training set as

q
Ie,(7,1;8) = Y aiAy(), (12)
=1

whered = [aq,. .., a,] iSthe vector of scalar values to be
estimated and ¢ < p.

Figure 8 shows samples of mouth images taken from a
training set of approximately 500 images. The training set
included image sequences of a variety of different subjects
performing the facial expressions*“joy,” “anger,” and “sad-
ness.” The faces of each subject were stabilized with re-
spect to the first frame in the sequence using a planar mo-
tion model [5]. The mouth regions were extracted from the
stabilized sequences and PCA was performed. Thefirst 11
basisimages account for 85% of thevariancein thetraining
data and the first eight of these are shown in Figure 9.
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Figure9: First eight basis appearance images, A (%), ...
Asg (), for thefacial expression experiment.
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Figure 10: First eight basisflow fields, M1 (%), ..., Ms(¥)
for thefacial expression mouth motion.

6.2 Learned Deformations

We |learn adomain-specific model for the deformation com-
ponent of the appearance change in much the same way us-
ing PCA (see[7]). We first compute image motion for each
training sequence using the brightness constancy assump-
tion and a robust optical flow algorithm [3]. The training
set consists of a set of p optica flow fields. For images with
s = nxm pixels, each flow field contains2s quantities(i.e.,
the horizontal and vertical flow components at each pixel).
For each flow field we placethe 25 valuesinto acolumn vec-
tor by scanning «(Z) and then v(&) in lexicographic order.
The resulting p vectors become the columns of a2s x p ma-
trix F'.

Asabovewe use PCA todecompose F as F = M %, V,T.
Flow fieldslikethosein thetraining set can then be approx-
imated as

k
i(F m) = Y my Mj(#),

j=1

where k < p, and M; (¥) denotes the j'* column of M in-
terprated asa2D vector field. Notethat thislearned model is
conceptually equivalent to the affine model s used above ex-
cept that it istailored to a domain-specific class of motions.

Figure 10 showsthefirst eight basis flow fields recovered
for thistrainingset. Thefirst 11 basisflow fields account for
85% of thevariance in the training set.

6.3 Mixtureof Motion and I conic Change

We model appearance change of amouth as amixture of the
learned motion and iconic models. We performed a num-
ber of experiments with image sequences of subjects who



were not present in the training set. In our experiments we
used 11 basis vectors for both motion and iconic models.
We egtimated the parameters for deformation &y = m,
iconic change &, = d, and the ownership weights, w; and
w4 between each consecutive pair of frames using the EM-
algorithm as described earlier with afour-level pyramid.

Figure 11 shows two consecutive frames from a smiling
sequence; notice the appearance of teeth between frames.
The motion mode!, (I, (Z,t; 1)), does agood job of cap-
turing the def ormati on around the mouth but cannot account
for the appearance of teeth. The recovered flow field is
shown in Figure 11d and one can see the expansion of the
mouth. The iconic model, /~,, on the other hand, does a
reasonabl e job of recovering an approximate representation
of theimage at time¢ (Figure 11c). Theiconic model how-
ever does not capture the brightness structure of the lipsin
detail. Thisbehavior istypical. The iconic model isan ap-
proximation to the brightness structure so, if the appearance
change can be described as a smooth deformation, then the
motion model will likely do a better job of explaining this
structure.

The behavior of the mixture model can be seen in the
weights (Figures 11g and 11h). The weights for the motion
model, w; (%), are near zero in the region of the teeth, near
onearound the high contrast boarder of thelips, and near 0.5
in the untextured skin region which is a so well model ed by
theiconic approximation /¢, .

Figure11fisthe" stabilized” image using bothmotionand
iconicmodels(wy (#) ¢, (F,t; d1)+ + wa(¥) I, (F,1; &4))
Note how the stablized image resembles the origina im-
agein Figure 11a. Also noticethat the iconic model fillsin
around the edges of the stabilized image where no informa-
tion was available for warping the image.

6.4 Discussion

Our motivation in exploring image deformation and iconic
change isto address a genera theory of appearance change
in image seguences. While optical flow characterizes
changes that obey brightness constancy, it is only one class
of appearance change. Occlusion/disocclusion is another
class in which one surface progressively covers or reveas
another. While optical flow and occlusion/disocclusion
have been studied in detail, other types of appearance vari-
ations have not. In particular, with complex objects such as
mouths, many of the appearance changes between frames
are not image deformations that conserve brightness.

Onecould ask: “Why model image deformation”? While
all image changes might be modeled by iconic change
this does not reflect the natura properties of objects (their
“structura texture” [9]) and how they change. Motionisa
natural category of appearance change that is important to
model and recover.

One could also ask: “Why model iconic change’? While

optical flow methods exist that can ignore many appear-
ance changes that do not obey brightness constancy, it is
important to account for, and therefore model, these im-
age changes. Iconic change may be important for recogni-
tion. For example, we postul ate that the systematic appear-
ance/disappearance of teeth should be a useful cue for aid-
ing speech and expression recognition. In addition, we be-
lieve that the temporal change of some objects may not be
well modeled as image deformation. For example, bushes
and treesblowingin thewind exhibit spatiotemporal texture
that might best be modeled as a combination of motion and
iconic change.

7 FutureDirections

The experiments here have focused on pairs of causes. A
natural extension of the work would be to combine all four
types of appearance change in asingle mixtureformulation.
Towardsthisend, aresearch issuethat warrantsfurther work
is the use of priors on the collection of models that enable
oneto prefer some explanations over others.

Additionally, we may expect more than one instance of
each type of appearance change within an image region. In
this case we will need to estimate the number of instances
of each appearance model that are required. There has been
recent work on thistopicin the area of multiple motion es-
timation [1, 20].

A related issue is the use of spatia smoothness in the
modeling of appearance change. In place of the parameter-
ized models we might substitute regularized models of ap-
pearance change with priorson their spatial smoothness. In
a mixture model framework for motion estimation, Weiss
[19, 20] has shown how to incorporate regul arized models
and smoothness priors on the ownership weights.

Another outstanding research issue concerns the learn-
ing and use of domain-specific model s when more than one
domain of interest exists. When one has severa domain-
specific models the problems of estimation, indexing, and
recognition become much more interesting (cf. [7]).

8 Conclusions

Appearance changes inimage sequences result from acom-
plex combination of events and processes, including mo-
tion, illuminationvariations, specul arities, changesin mate-
rial properties, occlusions, and disocclusions. In this paper
we propose a framework that models these variations as a
mixtureof causes. To illustratetheideas, we have proposed
some simple generative models.

Unlike previous work, the approach alows us to pull
apart, or factor, image appearance changes into different
causes and to locate where in the image these changes oc-
cur. Moreover, multiple, competing, appearance changes
can occur in asingle image region. We have implemented
and tested the method on a variety of image sequences with
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Figure 11: Facial Expression Experiment.

different types of appearance change.

Oneway to view thiswork is as a generalization of cur-
rent work in thefield of motion estimation. The framework
presented here is more genera than previous approaches
which have relaxed the brightness constancy assumption.
We expect that more complex models of illumination varia-
tion and iconic change can be accommodated by the frame-
work and we feel that it presents a promising direction for
research inimage sequence anaysis.

Acknowledgements. Wethank Allan Jepson for hiscom-
mentsand Jeffrey Cohnfor thefacia expression sequences.
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