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Abstract

In this paper we consider a class of human activities -atomic activities- which can be rep-
resented as a set of measurements over a finite temporal window (e.g., the motion of human
body parts during a walking cycle) and which has a relatively small space of variations in perfor-
mance. A new approach for modeling and recognition of atomic activities that employs principal
component analysis and analytical global transformations, is proposed. The modeling of sets
of exemplar instances of activities that are similar i duration and involve similar body part
motions is achieved by parameterizing their representation using principal component analysis.
The recognition of variants of modeled activities is achieved by searching the space of admissible
parameterized transformations that these activities can undergo. This formulation iteratively
refines the recognition of the class to which the observed activity belongs and the transformation
parameters that relate it to the model in its class. We provide several experiments on recognition

of articulated and deformable human motions from image motion parameters.



1 Introduction

Activity representation and recognition are central to the interpretation of human movement. There
are several issues that affect the development of models of activities and matching of observations

to these models,

e Repeated performances of the same activity by the same human vary even when all other

factors are kept unchanged.

e Similar activities are performed by different individuals in slightly different ways.

e In the modeling stage, defining the activity from onset to offset can sometimes be challenging.
While in the recognition stage the onset and ending of an activity must be determined in

conjunction with activity identification.

e Similar activities can be of different temporal durations.

o Different activities may have significantly different temporal durations.

There are also imaging issues that affect the modeling and recognition of human activities

e Occlusions and self occlusions of body parts during activity performance.

e The projection of movement trajectories of body parts depend on the observation viewpoint.

e The distance between the camera and the human affect image-based measurements due to

the projection of the activity on a 2D plane.

An observed activity can be modeled using vectors of measurements at discrete time instants

that capture the motion of body parts. The objective of this paper is to develop a method for



modeling and recognition of these temporal measurements while accounting for some of the above
variances in activity execution.

Consider as an example Figure 1 (see Appendix for computation details), which shows both
selected frames from an image sequence of a person walking in front of a camera and the model-
based tracking of five body parts (i.e., arm, torso, thigh, calf and foot [11]). The figure also shows
two motion parameters recovered for each of five body parts (horizontal translation and rotation
in the image plane).

In this paper we address a class of activities that we label “atomic” activities. These are defined

to be human movements that satisfy the following

¢ The movements are structurally similar over the range of performers, For example, a cycle
of walking is an atomic activity since its execution steps are quite similar among people and
its speed varies within known ranges defined by physical constraints. In contrast, a “jump”
movement does not have a single structure since people may jump on their left, right or both

legs, or vertically only or horizontally and vertically.

¢ The movements are mapped onto a finite temporal window. For example, a cycle of walking
is an atomic activity since it can be mapped onto a finite temporal window that is bounded
by a maximal walking speed. Periodic movements are not atomic since they can be composed

of many cycles and thus are not time-bounded.

Modeling and recognition of atomic activities is most challenging when the activities have both
structural similarities and similar temporal durations (e.g., “walking” versus “marching” cycles).
In this case, a comprehensive modeling and recognition strategy is needed. In this paper we focus

on these activities and provide two sets of atomic activities that humans regularly perform, the first



involves articulated movements such as “walking,” “kicking,” and “marching,” while the second
involves deformable mouth motions during single letter utterances.

In the remainder of this paper we show that a reduced dimensionality model of activities such as
“walking” can be constructed using principal component analysis (PCA, or an eigenspace represen-
tation) of example signals (“exemplars”). Recognition of such activities is then posed as matching
between the principal component representation of the observed activity (“observation”) to these
learned models that may be subjected to “activity-preserving” transformations (e.g., change of
execution duration, small change in viewpoint, change of performer, etc.).

Figure 2 illustrates the framework for modeling and recognition of activities. The right side of
the figure shows exemplar activities (i.e., instances 1..k of M different atomic activities, k > M)
where each instance of an activity has a set of six signals of temporal measurements. These activities
can be modeled using a PCA-based representation as a set of ¢ “activity bases”, ¢ < k (see lower
right part of the figure). The left side of the figure shows an observed activity that is a translated
and scaled version of an instance of one of the modeled activities. In this paper we propose an
algorithm for recovering the translation, time-scale, and magnitude-scaling of the observed activity
given that it is represented in the joint space of activity bases. This algorithm recovers a set of
expansion coefficients (i.e., ¢1,..., ¢, in Figure 2) that is used in determining the closest matching

activity from the exemplars used in learning.

2 Previous Work

Approaches that have been recently employed for modeling and recognizing activities can be divided

into data-fitting (e.g., neural networks [17], Dynamic Time Warping (DTW) [9, 10], regression [14]),



feature localization (e.g., scale-space curve analysis [1, 16]) and statistical approaches (e.g., Hidden
Markov Models (HMMs) [8, 13, 19]). It is common in these approaches to develop a separate model
for each activity, match an observed activity to all models and choose the model that explains it
best.

Activity recognition using HMMs was reported in [8, 13, 19] based on motion and appearance
parameters. In these cases, a set of hidden states was specified a priori and examples were used
to estimate the transition probabilities between states. Bobick and Wilson [6] proposed a state-
based approach to representing the parameters in an image sequence of gestures. The states were
augmented by a time parameter to preserve temporal ordering. Activity recognition was posed as
a search in a space of states representing configurations of gestures using dynamic programming.
Some activities have a fine grain continuous structure, not well represented by sparse discrete
states. An HMM in which each time instant is represented by a state is more comparable to the
representation we develop in this paper.

Recognition of activities subject to “admissible” transformations (e.g., time scaling) enhances
the performance of a recognition algorithm since it quantifies the relationship between an instance
of an activity and previously encountered instances of that activity. While the above approaches
are able to locally handle temporal variability in the data stream of an observed activity, they lack
a global detailed model to capture these variabilities. Consequently, it may be difficult with these
approaches to explicitly recover and recognize a class of parameterized temporal transformations
of an observed activity with respect to a learned model.

Some activities are cyclic thus requiring that several cycles be observed for recognition. Allmen
and Dyer [1] proposed a method for detection of cyclic motions from their spatio-temporal curves by

tracking high curvature points of the curves. Also, Polana and Nelson [15] proposed an approach to



detecting and recognizing activities by low-level spatio-temporal analysis using Fourier transforms.
The approach exploits the cyclic nature of some activities to model and recognize them from image
motion (normal flow) measured in image sequences. Seitz and Dyer [18] proposed an approach for
determining whether an observed motion is periodic and computing its period. Their approach is
based on the observation that the 3D points of an object performing affine-invariant motion are
related by an affine transformation in their 2D motion projections.

The approach we propose in this paper is time-contiguous and global; therefore it is an explicit
representation of activities. This representation is amenable to matching by global transforms
(such as the linear transformation we consider). Also, this global feature allows recognition based
on partial or corrupted data (including missing onset or offset data). The most closely related
work to the work reported here is that of Bobick and Davis [7] and Ju et al. [11]; both proposed
using principal component analysis to model parameters computed from activities but did not
demonstrate modeling and recognition of activities. Also, Li et al. [12] proposed a PCA-based

modeling and recognition approach that exploited entire image sequences of people utterances.

3 Modeling Activities

Activities will be represented using examples from various activity classes (walking, running etc.).

Each example consists of a set of signals. For training, we assume that
e all exemplars are less than or equal to a constant duration

e all examples from a given class are temporally aligned



The j—th exemplar from class ¢ is a function from [0...T] on R,
eli(t) : [0..T] — R® (1)

where n is the number of activity parameters (e.g., translation, rotation etc.) measured at frame ¢
of the image sequence of length T. So, [e/;(?)] is a column vector of the n measurements associated
with the j—th exemplar from activity class ¢ at time ¢. Let éf = [e’;],, represent the nT column
vector obtained by simply concatenating the e/;(¢) for t = 0,..., T into a 1xnT column vector. The
set of all j and 7 of éf is used to create the matrix A of dimensions nT X k where k being the

number of instances of all M activities, k < nT.

Matrix A can be decomposed using Singular Value Decomposition (SVD) as
A=UxvT (2)

where U is an orthogonal matrix of the same size as A representing the principal component
directions in the training set. 3 is a diagonal matrix with singular values o1, 09, ..., 0} sorted
in decreasing order along the diagonal. The k x k matrix V7 encodes the coefficients to be
used in expanding each column of A in terms of principal component directions. It is possible to

approximate an instance of activity € using the largest ¢ singular values oy, 09, ..., 04, so that

q
exe* = ZC[U[ (3)

=1

where €* is the vector approximation, ¢; are scalar values that can be computed by taking the dot

product of € and the column Uj; that is, by projecting the vector € onto the subspace spanned by



the ¢ basis vectors. The approximation can be viewed as a parameterization of the vector € in terms

of the basis vectors U; (I = 1..q), to be called the activity bases, where the parameters are the ¢;’s.

4 Activity Recognition

Recognition of activities involves matching an observation against the exemplars, where the observa-
tion may differ from any of the exemplars due to variations in imaging conditions and performance
of activities as discussed earlier. We model variations in performance of an activity by a class
of transformation functions 7. Most simply, 7 might model uniform temporal scaling and time
shifting to align observations with exemplars.

Let D(¢) : [1..T] — R™ be an observed activity and let [D] denote the nT column vector obtained
by first concatenating the n feature values measured at ¢, for each D(?) and then concatinating
D(t) for all ¢. Let also [D]; denote the j-th (j = 1..nT) element of the vector [D]. By projecting
this vector on the activity basis we recover a vector of coefficients, ¢, that approximates the activity
as a linear combination of activity bases.

Black and Jepson [3] recently pointed out that projection gives a least squares fit which is not
robust. Instead, they employed robust regression to minimize the matching error in an eigenspace
of intensity images. Adopting robust regression for recovering the coefficients leads to an error

minimization of the form:

nT q
E(&) =Y p(([D]; = >_ali;),0) (4)
7=1 =1

where p(z,0) is a robust error norm over z and o is a scale parameter that controls the influence



of outliers. In the experiments in this paper we use

$2

plz, o) = o1 22

This robustness is effective in coping with random or structured noise. Black and Jepson [3] also
parameterized the search to allow an affine transformation of the observation to be used to improve
the matching between images and principal images. In our context, a similar transformation allows
an observation to be better matched to the exemplars. Let 7(d,t) denote a transformation with
parameter vector @ that can be applied to an observation D(¢) as D(t + 7 (d,t)).

Given an observed activity D(?), the error minimization of Equation (4) now becomes

nT q
E(Ga)=> p([D(t+7T(a,t)); - ali;o) (5)
7=1 =1

Equation (5) is solved using simultaneous minimization over the coefficient vector ¢ and the trans-
formation parameter vector @. It should be noticed that a more general transformation on D(?) is
possible, specifically 7(D(t)) instead of D(t 4 7(d,t)). We chose the latter transformation since it
imposes “signal constancy” in terms of the range of values of D(¢) and defines explicitly a “point
motion” transformation that is controlled by the model of 7(a@,t).

The transformed D(¢ + 7(d,t)) can be expanded using a first order Taylor series

D(t + 7(d,1)) = D(t) + Dy ()T (@,1) (6)
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where Dy is the temporal derivative. Equation (5) can be approximated as

nT q
E(&a) =Y p([D(t)]; + De(t)T(@.1)]; = > alij,o) (7)

Equation (7) can be minimized with respect to @ and ¢ using a gradient descent scheme with a
continuation method that gradually lowers o (see [2]). Initial projection of the observation on the
eigenspace provides a set of coeflicients ¢ that are used to determine an initial estimate of @ that is
used to warp the observation into the eigenspace. The algorithm alternately minimizes the errors of
the eigenspace parameterization and the transformation parameterization. Due to the differential
term in Equation (7) it is possible to carry out the minimization only over small values of the
parameters. To deal with larger transformations a coarse-to-fine strategy can be used to compute
the coefficients and transformation parameters at coarse resolution and project their values to finer
resolutions similar to what is described in [3]. This coarse-to-fine strategy does not eliminate the
need for approximate localization of the curves even at coarse levels.

Upon recovery of the coefficient vector, ¢, the normalized distance between the coeflicients, ¢;,
and coefficients of exemplar activities coefficients, m;, is used to recognize the observed activity.

The Fuclidean distance, d, between the distance-normalized coefficients is given as

q

d* =3 (ciflld] = mqf||ml])* (8)

=1

where m is vector of expansion coefficients of an exemplar activity. The exemplar activity with the

coefficients that score the smallest distance is considered the best match to the observed activity.
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5 Experiments

In this section we discuss implementation issues and demonstrate our approach on two different
activity domains, articulated and deformable body motions. We show the effectiveness of the
proposed approach on large data-sets.

In the first set of experiments, the temporal motion parameters recovered during tracking of
a human performing an activity observed from different viewpoints are modeled and then the
recognition performance evaluated. The second set focuses on modeling and recognition of four
activities as seen from the same viewpoint. Finally, the third set demonstrates the modeling and
recognition of speech-reading from visual motion information. Thirteen letters of a single speaker
are modeled and recognized using the optical-flow of the mouth motion. In total, several hundred
long image sequences of complex activities were used. In these experiments we assume that the
objective is recognition of the activity from one cycle (or less) of its performance while ignoring

periodicity.

5.1 Modeling and Recognition of Walking

We employ a recently proposed approach for tracking human motion using parameterized optical
flow [11] (see Appendix). This approach assumes that an initial segmentation of the body into parts
is given and tracks the motion of each part using a chain-like model that exploits the attachments
between parts to achieve tracking of body parts in the presence of non-rigid deformations of clothing
that cover the parts. The work reported emphasized the low-level tracking component and suggested
a possible recognition strategy of the temporal parameters subject to changes of viewpoint and

imaging parameters. In this subsection we employ our proposed approach to demonstrate the
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recognition of activities under varying viewpoints and imaging parameters. We assume that a
viewer-centered representation is used for modeling and recognition of several activities. Let D(¢)
be the n dimensional signals of an observed activity. A total of five body parts (arm, torso, thigh,
calf and foot) were tracked using 8 motion parameters for each part (i.e., n=40). In [11] it was

suggested that the following transformation does not change the the activity D(¢)
S*D(at + L) (9)

This transformation captures the temporal translation, L, of the curve and the scaling, S, in the
magnitude of the signal in addition to the speedup factor o. The magnitude scaling, S, of the signal
accounts for different distances between the human and the camera (while the viewing angle is kept
constant) and the anthropometric variation across humans. The temporal scaling parameter « is:
a > 1.0 leads to a linear speed up of the activity and a < 1.0 leads to its slow down. Figure 3
describes the effect of each parameter on a single signal.

Recognition of activity D(¢) as an instance of a learned activity requires minimizing the error:

nT
E(a,L,S) =Y p([S * D(at + L)]; ZC;UJ,], (10)
7=1

This equation can easily be rewritten and solved as in Equation (7), where

T(a,Lt) =1+ (a— 1)+ L (11)

nT
E(E,a,L,5)=">Y p([S*(Dy(t)T(a, L, t)+ D(t ZC,UM, ) (12)

i=1
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Since the error minimization involves a non-linear term we simplify the computation by observing
that the multiplication by a constant S can be substituted by dividing the coefficients ¢; by S, and
therefore in actuality the recovered coefficients are correct up to a scaling factor (i.e., recovering
¢;/S). The matching of coefficients is done as in Equation(8). Upon finding the best match the
coefficients ¢; /S are compared with the matching exemplar coefficients to compute the scaling factor
S. Since computing S is overconstrained (¢ equations with one variable), the mean of S is taken as
the scaling factor (i.e., S = (37, (ci/mi))/q).

The value of S is greater than 1.0 if (a) the activity is viewed at a closer distance than in training
(therefore the perception of “larger quantities” is a result of the projection), or, (b) actual faster

execution of the activity (which also leads to a temporal scaling for ).

5.2 Synthetic Experiment

In the following experiment we demonstrate the recovery of the parameters of the linear model
for a “walking” sequence. We show that unregistered data, with respect to the exemplars, can be
aligned using the linear transformation.

Figure 4 shows the first two principal components of one parameter of the walking cycle, hori-
zontal translation ag (however, the forty parameters are modeled in the principal components) for

sample walking cycles from 10 subjects viewed from the same viewpoint. Also, the figure shows

ZZZ=1 A2
Zf=1 A

number of principal components used in reconstruction (five components are needed to capture

the ratio of captured information, (A; is the [-th largest eigenvalue), as a function of the

90% of the information while the first component alone captures about 70%). This suggests that a
single component can capture walking well if viewed from a single viewpoint.

Figure 5 (left) shows five temporal curves of one parameter ag of a test sequence of a new
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subject. In this experiment we show the on-line recovery of transformation 7 for “walking.” We
artificially start the recognition at different frames during the “walking” test sequence (specifically
from frame 1015) and recover the translation L and speed a. Notice that the tested activity begins
about 35 frames into the “walking” model (Figure 5, left graph). A translation of 35 frames will
align the tested activity with the model. The graphs in Figure 5 (center and right) show the
recovered translation L and scaling (o — 1) parameters of the “walking” activity as a function
of the starting frame. Notice that at frame 1015 a displacement of about 2 frames leftward is
needed to align the curve of Figure 5 to the “walking” activity model described in Figure 4. This
displacement is increased as the input curve is translated in time. The scaling parameter indicates
that the test activity is about 6% faster than the mean “walking” activity. This experiment also
shows the effectiveness of the robust norm since it facilitates recognition even when some of the
data is inaccurate due to noise or missing (e.g., all parameters between frames 1015 and 1045 are
zero).

Figure 7 shows the cumulative captured information by the principal components for a single
person’s walking as viewed from ten different viewing directions (see Figure 6). The angles include
walking perpendicular to the camera (towards and away from it). In this case 6 principal compo-
nents are needed to capture 90% of the information in the motion trajectory of multi-viewpoint
observation of walking. Figure 8 shows frames from test sequences for four walking directions.

A set of 44 sequences of people walking in different directions were used for testing. The
model of multi-view walking was constructed from the walking pattern of one individual while the
testing involved eight subjects. The first six activity basis were used. The confusion matrix for
the recognition of 44 instances of walking-directions are shown in Table 1. Each column shows the

best matches for each sequence. The walkers had different paces and stylistic variations some of
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H Walking Direction ‘ Parallel ‘ Diagonal ‘ Perpendicular Away ‘ Perpendicular Forward H
Parallel 11 2
Diagonal 3 14 1
Perpendicular Away

Perpendicular Forward | 1 1
[ Total | 15 | 17 K E |

Table 1: Confusion matrix for recognition of walking direction

which where recovered well by the linear transformation. Also, time shifts were common since only
coarse temporal registration was employed prior to recognition. The classification shown in Table
1 was based on the closest distance of the tested data set to a trained viewing direction based on

the estimated coefficients.

5.3 Recognition of Four Activities

In this section we illustrate the modeling and recognition of a set of activities that we consider
challenging for recognition. We chose four activities that are overall quite close in performance:
walking, marching, line-walking', and kicking while walking. Fach cycle of these four activities lasts
approximately 1.5 seconds.

Figure 9 shows several frames from a performance of each activity by a subject and the tracking
of body parts. We acquired tens of sequences of subjects performing these four activities as observed
from a single view-point. Temporal and stylistic variabilities in the performance of these activities
are common. Clothing and lighting variations also affected the accuracy of the recovery of motion
measurements from these image sequences. The training sequences were temporally registered so
that the beginning of all activities is equal in terms of the perceived configuration of body parts.

Table 2 shows the total number of activities used for both modeling and recognition. The

! A form of walking in which the two feet step on a straight line and spatially touch when both are on the ground.
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H Activity ‘ Number of Training Sequences ‘ Number of Test Sequences H

Walking 7 15
Line-Walking 7 28
Marching 7 11
Walking to Kick | 7 12

Table 2: List of activities and the number of occurrence of each in training and recognition

training instances of activities were used to construct the activity basis for the four activities.
This activity basis is used in the testing stage on new instances of these activities in which new
performers and performances were employed.

Figure 10 (left) shows the percentage of cumulative information captured by the principal
components as a function of the number of the principal components for 28 instances of four
activities. It also shows how the first three principal components (which capture about 60% -while
the fourth principal component captures only 4%) could classify the four activities (see Figure 10
(right), in which the first three expansion coefficients are shown for the 28 activities, the inter-
activity variation exceeds the intra-activity variation). Recall that the coefficients of the training
examples are computed by projecting each activity in the training set on each one of the basis
activities using scalar multiplication. The labels point to the four types of activities used in the
training set. In the following recognition experiments, however, we use 15 activity bases to capture
most of the information about the activities.

Table 3 shows the confusion matrix for recognition of a set of 66 test activities. These activities
were performed by some of the same people who were used for model construction as well as other
performers. Variations in performance were accounted for by the linear transformation. Up to 30%
speed-up or slow-down as well as up to 15 frames temporal shift were accounted for by the linear

transformation used in the matching.
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H Activity ‘ Walking ‘ Line-Walking ‘ Walking to Kick ‘ Marching H

Walking 11 3 3
Line-Walking 3 24 1
Walking to Kick 12
Marching 1 1 7
| Total | 15 | 28 | 12 [ 11 |

Table 3: Confusion matrix for recognition results

5.4 Modeling and Recognition of Speech

In this section we demonstrate the modeling and recognition of speech from visual information
using optical flow measurements computed over long image sequences.

The training set for this experiment consists of 130 image sequences containing a single speaker
who utters thirteen letters ten times (Figure 11). The duration of each utterance is 25 frames.
We computed the image motion for each sequence in the training set using a robust optical flow
algorithm [2]. The robust method is essential as it allows violations of the brightness constancy
assumption that occur due to the appearance/disappearance of the teeth, tongue, and mouth
cavity. We then randomly chose a subset of 793 flow fields from the training set of 3120 flow fields
and derived a low-dimensional representation using principal component analysis (for a detailed
description see [5] and Appendix).

Since the image motion of the mouth in our training sequence is constrained, much of the
information in the training flow fields is redundant and hence the singular values drop off quickly.
For the training data here, the first eight basis flow fields account for over 90% of the information
in the training set and are shown in Figure 12.

Image motion is represented as a linear combination of the basis flow templates: S5, m; Mi(x)
(M; is a flow template defined over a fixed rectangular region). Using this model, we estimate

the motion coefficients m; as described in [5]. We then use the eight motion coefficients computed
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between consecutive images to construct a joint temporal model for the letters. We consider each
spoken letter to be an activity of 25 frames in duration where eight measurements are computed at
each time instant. The 130 image sequences are used to construct a low-dimensional representation
of the 13 letters. These 130 sequences can be represented by a small number of activity-basis as
shown in Figure 13. Fifteen activity basis capture 90% of the temporal variation in these sequences.

Figure 14 shows the eight recovered parameters (i.e., the motion-template expansion coefficients)
for each letter throughout a single image sequence using a test sequence not in the training set.
This figure illustrates the complexity of the modeling and recognition of this large data set.

For the testing of recognition performance, we use 10 new data sets of the same subject repeating
the same 13 utterances. A total of 130 sequences were processed. For each two consecutive frames in
the test sequences we computed the linear combination of the motion-templates that best describes
the intensity variation (see [5]) and use the linear coefficients for recognition.

The confusion matrix for the test sequences is shown in Table 4. The columns indicate the
recognized letter relative to the correct one. Each column sums to 10, the number of each letter’s
utterances. The confusion matrix indicates that 58.5% correct classification was achieved. When
the recognition allowed the correct letter to be ranked second in the matching the success rate
increased to 69.3%. Recall that it is well established that visual information is ambiguous for dis-
criminating between certain letters. In this set of experiments we observe some of these confusions.
Nevertheless, this experiment shows the effectiveness of the representation we propose for modeling

and recognition.
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Recognized Letter | A [B[C|D|E|F|G|H|I|J][K]|L[M]
Letter A 5 1 1|2 2 11 |1
Letter B 9 1
Letter C 6 1 1
Letter D 1111215
Letter E 7
Letter F 2 2 5 1 1 1
Letter G 212 |1 7 1
Letter H 1 8
Letter I 1 1 4 1 13 |1
Letter J 1
Letter K 1 41117 111
Letter L 1
Letter M 2 316

Table 4: Confusion matrix for recognition of 130 sequences of 13 letters

5.5 Discussion of Experiments Results

The above experiments have demonstrated the performance of the proposed modeling and recog-
nition approach. The following summarizes our observations on the computational aspects of the

algorithm:

e The complexity of the algorithm is a function of the: number of free parameters, maximal
length of activity bases and minimization parameters. In the reported experiments the num-
ber of estimated parameters (transformation parameters plus the expansion coefficients) has
been between 10-20. The length of activity basis has been 160 frames multiplied by the 40
instantaneous parameters for articulated motion. Fifteen iterations of gradient descent were

performed. The overall complexity is proportional to 20« nT % 15 and is O(1).

e The parameter search may converge to local minima if the initial alignment between the
activity models and observed activity is too far to be accounted for by the coarse-to-fine

differential formulation of the algorithm. To prevent local minima selection the algorithm
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is started with several initial alignments and the results are compared so that the global
minimum of the error function is chosen. Since the activity model duration is 160 frames for
the articulated movement we found that starting with 8 points is sufficient. Points are select

at 0,20, 40,60,80,100, 120, 140 frames relative to the onset of the model.

e The algorithm can be used for on-line activity recognition. For example, once several tens of
frames of an activity have been acquired, recognition can be started and then repeated for
each incoming frame. Figure 15 shows a few frames from an on-line experiment for recognition
of “marching.” The figure shows that a temporal translation of about 7 frames and ordinary
speed are recovered (bottom left and center graphs, respectively in each frame). Also it shows
for four sample frames the distance of the observed activity from the closest sample in the
training set of activities (see the bottom right graph in each frame). This distance is initially
large since there are only a few frames of input (see the first 50-70 frames), then it decreases
rapidly as more frames are acquired and the approximation of the observed data by the basis
activities becomes closer to one of the known activities (an activity from the training set).

Eventually this distance goes down to zero if the activity closely resembles a training activity.

6 Conclusions

In this paper we proposed and tested parametric models for activity modeling and recognition when
a large number of temporal parameters are recovered from an image sequence. Principal component
analysis and linear transformations were employed to economically represent these activities and
effectively recover and recognize instances of learned activities. This approach was demonstarted

on large sets of image sequences for recognition of both articulated and deformable motions.
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The modeling and recognition algorithm proposed is simple to implement. The principal com-
ponent analysis determines the proper representation based on the data. Robustness to several
sources of variation in performance of activities is an important issue that can be challenging
to achieve. The employment of linear transformations in the recognition allowed us to recognize
activities even when time scaling and shift were encountered.

The formulation of an activity-preserving transformation can potentially account for a wide
range of variations of temporal parameters that result from viewpoint changes and imaging pa-
rameters. In this paper we focused on variations of the well understood linear model. The linear
transformation, however, is a uniform transformation and therefore is limited to capturing global
variations in execution of activities. The formulation we proposed allows future incorporation of

non-uniform transformations.
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Appendix

Articulated Motion Estimation Algorithm

In the following we summarize the articulated motion estimation model proposed in [11]. This
model assumes that each body part is a plane moving in a perspective scene. The optical flow of

each body patch is given by

w(z,y) = ao+ a1z + axy + asr’ + arxy, (13)
v(z,y) = a3+ as@ + a5y + asry + ary?, (14)
where a = [ag, a1, a9, as,a4,as,a6,a7] denotes the vector of parameters to be estimated, and

u(x,a) = [u(z,y),v(z,y)]" are the horizontal and vertical components of the flow at image point
x = (z,y). The coordinates (z,y) are defined with respect to the centroid of the whole body region
(i.e., a shared center for all parts).

To estimate the motion parameters, ag, for a given patch, s, we make the assumption that the
brightness pattern within the patch remains constant while the patch may deform as specified by

the model. This brightness constancy assumption gives rise to the optical flow constraint equation

VI -u(x,a;)+ L =0, Vx € R; (15)

where R, denotes the points in patch s, I is the image brightness function and ¢ represents time.
VI = [I;,1,], and I; are the partial derivatives of image brightness with respect to the spatial
dimensions and time at the point x.

For human articulated parts, we assume that each patch is connected to only one preceding
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patch and one following patch; that is, the patches construct a chain structure. For example, a
“thigh” patch may be connected to a preceding “torso” patch and a following “calf” patch. Each
patch is represented by its four corners. We simultaneously estimate the motion parameters, a,, of

all the patches. The total error of the motions of the patches (from 0 to n)

n n

Z Z p(VI-u(x,as)+ I;,0) (16)

t=
I

N

=
I

where p is a robust error norm. Since the connected patches motions must agree at the points of

attachment, a better constrained equation is given by

21
B= Yot A Y et ulxa) - = ula)) (17)
s=0 S XGAS

where [R| is the number of pixels in patch s, A controls relative importance of the two terms, A; is
the set of articulated points for patch s, a’ is the planar motion of the patch which is connected to
patch s at the articulated point x, and || -|| is the Euclidean norm. The use of a quadratic function
for the articulation constraint reflects the assumption that no “outliers” are allowed. The second
energy term (the “smoothness” term) in Equation (17) can also be considered as a spring force
energy term between two points. In the examples shown in this paper we track five body parts;
thus recovering 40 parameters.

Deformable Motion Estimation Algorithm

In the following we summarize the deformable motion estimation model proposed in [5]. The
computation model consists of two components: modeling principal flow templates and estimation

of image motion using these templates. Consider the case of mouth motion during speech, we assume
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that a region of interest, R, has been located and normalized in size to a desired rectangular size
(e.g., using the planar face registration in [4]).

The first component consists of two stages. In the first stage the dense optical flow of image
sequences with training samples of the mouth motions is computed using [2]. In the second stage a
principal component analysis (PCA) of the instantaneous flow fields of the training set of images is
computed. The output of this modeling component is a set of ¢ basis flow templates m;,7 = 1, ..., ¢,
(¢ < number of input flow fields), each basis vector consists of 2 * n elements (n is the number of
pixels in the region of interest). The instantaneous flow between any two consecutive images can

be well approximated by

q
fr =" e (18)
=1

where the first n elements represent the horizontal flow and the remaining n elements represent the
vertical flow at the n pixels.
The second component formulates an objective function that seeks to best explain brightness

movement in a new image sequence using the set of basis flow templates. This is given by

E(@) =Y p(VI-Y eaiiy) + I, 0) (19)

R =1

where recovery of the ¢; coefficients that minimize the error F is performed. Details of the minimiza-
tion can be found in [5]. The coefficients ¢; are the parameters used in the recognition experiments

in Section 5.4.
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Captions

¢ Figure 1: Frames from an image sequence of “walking” (top row), five parts tracking of the
visible human body parts (arm, roso, thigh, calf and foot, second row) and two sets of five
signals (out of 40), horizontal translation and image rotation that are recovered during the

activity (torso, thigh, calf, foot and arm).
e Figure 2: The parameterized modeling and recognition of signals.

¢ Figure 3: The effect of each parameter of the transformation on a signal D(t). The magnitude
scaling (top right), temporal translation (center right) and temporal scaling (bottom right)

of D(t).

e Figure 4: The cumulative information captured as a function of the number of principal com-
ponents (top) and the first and second principal components (center and right, respectively)
for 10 different people walking from a single view for the horizontal translation parameter of

the five body parts, (torso, thigh, calf, foot and arm).

e Figure 5: The horizontal motion parameter ag of the five tracked body parts of a test
sequence used in recognition and evaluation (left graph) and temporal translation and time
scale recovery for the “walking” input curve starting at frame 1015 up-to frame 1065 (i.e.,

translated).
e Figure 6: The experimental set-up in the multi-view walking sequences.

e Figure 7: The cumulative information captured as a function of the number of principal

components for one person observed walking from 10 different viewing directions.
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Figure 8: Tracking examples for four walking directions, forward, diagonal-45 degrees,

diagonal-75 degrees and away (top to bottom, respectively).

bY AN

Figure 9: Frames from image sequences of “walking,” “marching,” “kicking” and “line

walking” and five part tracking.

Figure 10: Cumulative information captured by the 28 basis activities (left) and the ex-
pansion coefficients of using the first three activity basis for the 28 activities (right) in which
classification among activity is clearly visible (¢1,c¢2 and ¢3 are shown with the respective

delineation of the type of activity in the training set).

Figure 11: Example frames for one letter in the training set.

Figure 12: First eight basis flow fields computed by PCA. They account for 90% of the

information in the 3120 training flow fields.

Figure 13: Cumulative variation captured by 130 basis vectors of the 130 sequences.

Figure 14: The eight coefficients of the motion-templates computed for each of 13 letters

during a complete utterance.

Figure 15: Tracking and on-line recognition of a marching activity. FEach frame describes
the temporal translation, temporal speed and distance of the observed data with respect to

the training examples.

29



1040 1070 1100 1130 1190 1220 1270
35 0.08
3r 0.06-
25F 0.041-
oL
c 0.02
S
8 15
_ o
z ! 3
< -0.02f
2 05
(=}
* -0.04
ok
-0.5 —0.06
s -0.08
15 . . . . . 01 . . . . .
1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300
frame number frame number

Horizontal translation

Image rotation

Figure 1: Frames from an image sequence of “walking” (top row), five parts tracking of the visible
human body parts (arm, roso, thigh, calf and foot, second row) and two sets of five signals (out of
40), horizontal translation and image rotation that are recovered during the activity (torso, thigh,

calf, foot and arm)

30




,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

EXEMPLARS

ey M

AT Trandated | Eigen |
w | Time Scal¢™|Matching | | MV )

K
C R

Activity 1 Activity k

g

'ONITZdON

RECOGNITION

Activity Basis 1 Activity Basis g

Figure 2: The parameterized modeling and recognition of signals

31



S*D(1)

D(t)

Magnitude scaling

D(t+L)

Model Signal

L Aﬁ
- t
Translation
D(at)

Temporal Scaling

Figure 3: The effect of each parameter of the transformation on a signal D(¢). The magnitude
scaling (top right), temporal translation (center right) and temporal scaling (bottom right) of
D(t).
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Figure 6: The experimental set-up in the multi-view walking sequences.
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Figure 8: Tracking examples for four walking directions, forward, diagonal-45 degrees, diagonal-75
degrees and away (top to bottom, respectively).
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Figure 10: Cumulative information captured by the 28 basis activities (left) and the expansion
coefficients of using the first three activity basis for the 28 activities (right) in which classification
among activities is clearly visible (¢1,¢2 and c¢3 are shown with the respective delineation of the
type of activity in the training set).
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Figure 11: Example frames for one letter in the training set.
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Figure 12: First eight basis flow fields computed by PCA. They account for 90%

in the 3120 training flow fields.
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Figure 14: The eight coefficients of the motion-templates computed for each of 13 letters during a
complete utterance (using the basis vectors corresponding to the eight largest eigenvalues).

42



=
i i
o & o 1.4
= g 1 = g 1
7 o 7 o
e 3 fog e 3 fog
E 2 F 0 g, RCH E 2 F 0 g, MARCH
8 2 od B £ # o &'
[ & d o 1 2 i 0.
04 04
0 0
R T E I T T 00 R T T0 00180 200 280 0 T w0
Frama Numtiar Frame Number Fram Numisar Frama Numtiar Frame Number Fram Numisar
i i
o & o 1.4
= g 1 = g 1
7 o 7 o
e 3 fog e 3 fog
E 2 F 0 g, MARCH E 2 F 0 g, MA
8 2 od B £ # o &'
[ & d o 1 2 i 0.
04 04
0 0
R T E I T T W Te 0 20 o R T T0 00180 200 280 0 T T
Frama Numtiar Frame Number Fram Numisar Frama Numtiar Frame Number Fram Numisar

Frame 190

Frame 230

Figure 15: Tracking and on-line recognition of a marching activity. Each frame describes the
temporal translation, temporal speed and distance of the observed data with respect to the training
examples (left, center and right, respectively).
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