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AbstractIn this paper we consider a class of human activities -atomic activities- which can be rep-resented as a set of measurements over a �nite temporal window (e.g., the motion of humanbody parts during a walking cycle) and which has a relatively small space of variations in perfor-mance. A new approach for modeling and recognition of atomic activities that employs principalcomponent analysis and analytical global transformations, is proposed. The modeling of setsof exemplar instances of activities that are similar in duration and involve similar body partmotions is achieved by parameterizing their representation using principal component analysis.The recognition of variants of modeled activities is achieved by searching the space of admissibleparameterized transformations that these activities can undergo. This formulation iterativelyre�nes the recognition of the class to which the observed activity belongs and the transformationparameters that relate it to the model in its class. We provide several experiments on recognitionof articulated and deformable human motions from image motion parameters.
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1 IntroductionActivity representation and recognition are central to the interpretation of human movement. Thereare several issues that a�ect the development of models of activities and matching of observationsto these models,� Repeated performances of the same activity by the same human vary even when all otherfactors are kept unchanged.� Similar activities are performed by di�erent individuals in slightly di�erent ways.� In the modeling stage, de�ning the activity from onset to o�set can sometimes be challenging.While in the recognition stage the onset and ending of an activity must be determined inconjunction with activity identi�cation.� Similar activities can be of di�erent temporal durations.� Di�erent activities may have signi�cantly di�erent temporal durations.There are also imaging issues that a�ect the modeling and recognition of human activities� Occlusions and self occlusions of body parts during activity performance.� The projection of movement trajectories of body parts depend on the observation viewpoint.� The distance between the camera and the human a�ect image-based measurements due tothe projection of the activity on a 2D plane.An observed activity can be modeled using vectors of measurements at discrete time instantsthat capture the motion of body parts. The objective of this paper is to develop a method for3



modeling and recognition of these temporal measurements while accounting for some of the abovevariances in activity execution.Consider as an example Figure 1 (see Appendix for computation details), which shows bothselected frames from an image sequence of a person walking in front of a camera and the model-based tracking of �ve body parts (i.e., arm, torso, thigh, calf and foot [11]). The �gure also showstwo motion parameters recovered for each of �ve body parts (horizontal translation and rotationin the image plane).In this paper we address a class of activities that we label \atomic" activities. These are de�nedto be human movements that satisfy the following� The movements are structurally similar over the range of performers, For example, a cycleof walking is an atomic activity since its execution steps are quite similar among people andits speed varies within known ranges de�ned by physical constraints. In contrast, a \jump"movement does not have a single structure since people may jump on their left, right or bothlegs, or vertically only or horizontally and vertically.� The movements are mapped onto a �nite temporal window. For example, a cycle of walkingis an atomic activity since it can be mapped onto a �nite temporal window that is boundedby a maximal walking speed. Periodic movements are not atomic since they can be composedof many cycles and thus are not time-bounded.Modeling and recognition of atomic activities is most challenging when the activities have bothstructural similarities and similar temporal durations (e.g., \walking" versus \marching" cycles).In this case, a comprehensive modeling and recognition strategy is needed. In this paper we focuson these activities and provide two sets of atomic activities that humans regularly perform, the �rst4



involves articulated movements such as \walking," \kicking," and \marching," while the secondinvolves deformable mouth motions during single letter utterances.In the remainder of this paper we show that a reduced dimensionality model of activities such as\walking" can be constructed using principal component analysis (PCA, or an eigenspace represen-tation) of example signals (\exemplars"). Recognition of such activities is then posed as matchingbetween the principal component representation of the observed activity (\observation") to theselearned models that may be subjected to \activity-preserving" transformations (e.g., change ofexecution duration, small change in viewpoint, change of performer, etc.).Figure 2 illustrates the framework for modeling and recognition of activities. The right side ofthe �gure shows exemplar activities (i.e., instances 1::k of M di�erent atomic activities, k > M)where each instance of an activity has a set of six signals of temporal measurements. These activitiescan be modeled using a PCA-based representation as a set of q \activity bases", q � k (see lowerright part of the �gure). The left side of the �gure shows an observed activity that is a translatedand scaled version of an instance of one of the modeled activities. In this paper we propose analgorithm for recovering the translation, time-scale, and magnitude-scaling of the observed activitygiven that it is represented in the joint space of activity bases. This algorithm recovers a set ofexpansion coe�cients (i.e., c1; :::; cq in Figure 2) that is used in determining the closest matchingactivity from the exemplars used in learning.2 Previous WorkApproaches that have been recently employed for modeling and recognizing activities can be dividedinto data-�tting (e.g., neural networks [17], Dynamic Time Warping (DTW) [9, 10], regression [14]),5



feature localization (e.g., scale-space curve analysis [1, 16]) and statistical approaches (e.g., HiddenMarkov Models (HMMs) [8, 13, 19]). It is common in these approaches to develop a separate modelfor each activity, match an observed activity to all models and choose the model that explains itbest.Activity recognition using HMMs was reported in [8, 13, 19] based on motion and appearanceparameters. In these cases, a set of hidden states was speci�ed a priori and examples were usedto estimate the transition probabilities between states. Bobick and Wilson [6] proposed a state-based approach to representing the parameters in an image sequence of gestures. The states wereaugmented by a time parameter to preserve temporal ordering. Activity recognition was posed asa search in a space of states representing con�gurations of gestures using dynamic programming.Some activities have a �ne grain continuous structure, not well represented by sparse discretestates. An HMM in which each time instant is represented by a state is more comparable to therepresentation we develop in this paper.Recognition of activities subject to \admissible" transformations (e.g., time scaling) enhancesthe performance of a recognition algorithm since it quanti�es the relationship between an instanceof an activity and previously encountered instances of that activity. While the above approachesare able to locally handle temporal variability in the data stream of an observed activity, they lacka global detailed model to capture these variabilities. Consequently, it may be di�cult with theseapproaches to explicitly recover and recognize a class of parameterized temporal transformationsof an observed activity with respect to a learned model.Some activities are cyclic thus requiring that several cycles be observed for recognition. Allmenand Dyer [1] proposed a method for detection of cyclic motions from their spatio-temporal curves bytracking high curvature points of the curves. Also, Polana and Nelson [15] proposed an approach to6



detecting and recognizing activities by low-level spatio-temporal analysis using Fourier transforms.The approach exploits the cyclic nature of some activities to model and recognize them from imagemotion (normal 
ow) measured in image sequences. Seitz and Dyer [18] proposed an approach fordetermining whether an observed motion is periodic and computing its period. Their approach isbased on the observation that the 3D points of an object performing a�ne-invariant motion arerelated by an a�ne transformation in their 2D motion projections.The approach we propose in this paper is time-contiguous and global; therefore it is an explicitrepresentation of activities. This representation is amenable to matching by global transforms(such as the linear transformation we consider). Also, this global feature allows recognition basedon partial or corrupted data (including missing onset or o�set data). The most closely relatedwork to the work reported here is that of Bobick and Davis [7] and Ju et al. [11]; both proposedusing principal component analysis to model parameters computed from activities but did notdemonstrate modeling and recognition of activities. Also, Li et al. [12] proposed a PCA-basedmodeling and recognition approach that exploited entire image sequences of people utterances.3 Modeling ActivitiesActivities will be represented using examples from various activity classes (walking, running etc.).Each example consists of a set of signals. For training, we assume that� all exemplars are less than or equal to a constant duration� all examples from a given class are temporally aligned7



The j�th exemplar from class i is a function from [0:::T] on Rn,ej i(t) : [0::T]! Rn (1)where n is the number of activity parameters (e.g., translation, rotation etc.) measured at frame tof the image sequence of length T. So, [ej i(t)] is a column vector of the n measurements associatedwith the j�th exemplar from activity class i at time t. Let �eji = [ej i]Tt=0 represent the nT columnvector obtained by simply concatenating the ej i(t) for t = 0; :::;T into a 1�nT column vector. Theset of all j and i of �eji is used to create the matrix A of dimensions nT � k where k being thenumber of instances of all M activities, k < nT.Matrix A can be decomposed using Singular Value Decomposition (SVD) asA = U�V T (2)where U is an orthogonal matrix of the same size as A representing the principal componentdirections in the training set. � is a diagonal matrix with singular values �1; �2; :::; �k sortedin decreasing order along the diagonal. The k � k matrix V T encodes the coe�cients to beused in expanding each column of A in terms of principal component directions. It is possible toapproximate an instance of activity �e using the largest q singular values �1; �2; :::; �q, so that�e��e� = qXl=1 clUl (3)where �e� is the vector approximation, cl are scalar values that can be computed by taking the dotproduct of �e and the column Ul; that is, by projecting the vector �e onto the subspace spanned by8



the q basis vectors. The approximation can be viewed as a parameterization of the vector �e in termsof the basis vectors Ul (l = 1::q), to be called the activity bases, where the parameters are the cl's.4 Activity RecognitionRecognition of activities involves matching an observation against the exemplars, where the observa-tion may di�er from any of the exemplars due to variations in imaging conditions and performanceof activities as discussed earlier. We model variations in performance of an activity by a classof transformation functions T . Most simply, T might model uniform temporal scaling and timeshifting to align observations with exemplars.LetD(t) : [1::T]! Rn be an observed activity and let [D] denote the nT column vector obtainedby �rst concatenating the n feature values measured at t, for each D(t) and then concatinatingD(t) for all t. Let also [D]j denote the j-th (j = 1::nT) element of the vector [D]. By projectingthis vector on the activity basis we recover a vector of coe�cients, ~c, that approximates the activityas a linear combination of activity bases.Black and Jepson [3] recently pointed out that projection gives a least squares �t which is notrobust. Instead, they employed robust regression to minimize the matching error in an eigenspaceof intensity images. Adopting robust regression for recovering the coe�cients leads to an errorminimization of the form: E(~c) = nTXj=1 �(([D]j � qXl=1 clUl;j); �) (4)where �(x; �) is a robust error norm over x and � is a scale parameter that controls the in
uence9



of outliers. In the experiments in this paper we use�(x; �) = x2�2 + x2 :This robustness is e�ective in coping with random or structured noise. Black and Jepson [3] alsoparameterized the search to allow an a�ne transformation of the observation to be used to improvethe matching between images and principal images. In our context, a similar transformation allowsan observation to be better matched to the exemplars. Let T (~a; t) denote a transformation withparameter vector ~a that can be applied to an observation D(t) as D(t+ T (~a; t)).Given an observed activity D(t), the error minimization of Equation (4) now becomesE(~c;~a) = nTXj=1 �([D(t+ T (~a; t))]j � qXl=1 clUl;j ; �) (5)Equation (5) is solved using simultaneous minimization over the coe�cient vector ~c and the trans-formation parameter vector ~a. It should be noticed that a more general transformation on D(t) ispossible, speci�cally T (D(t)) instead of D(t+ T (~a; t)). We chose the latter transformation since itimposes \signal constancy" in terms of the range of values of D(t) and de�nes explicitly a \pointmotion" transformation that is controlled by the model of T (~a; t).The transformed D(t + T (~a; t)) can be expanded using a �rst order Taylor seriesD(t + T (~a; t)) � D(t) +Dt(t)T (~a; t) (6)10



where Dt is the temporal derivative. Equation (5) can be approximated asE(~c;~a) = n TXj=1 �([D(t)]j +Dt(t)T (~a; t)]j � qXl=1 clUl;j ; �) (7)Equation (7) can be minimized with respect to ~a and ~c using a gradient descent scheme with acontinuation method that gradually lowers � (see [2]). Initial projection of the observation on theeigenspace provides a set of coe�cients ~c that are used to determine an initial estimate of ~a that isused to warp the observation into the eigenspace. The algorithm alternately minimizes the errors ofthe eigenspace parameterization and the transformation parameterization. Due to the di�erentialterm in Equation (7) it is possible to carry out the minimization only over small values of theparameters. To deal with larger transformations a coarse-to-�ne strategy can be used to computethe coe�cients and transformation parameters at coarse resolution and project their values to �nerresolutions similar to what is described in [3]. This coarse-to-�ne strategy does not eliminate theneed for approximate localization of the curves even at coarse levels.Upon recovery of the coe�cient vector, ~c, the normalized distance between the coe�cients, ci,and coe�cients of exemplar activities coe�cients, mi, is used to recognize the observed activity.The Euclidean distance, d, between the distance-normalized coe�cients is given asd2 = qXi=1(ci=jj~cjj �mi=jj~mjj)2 (8)where ~m is vector of expansion coe�cients of an exemplar activity. The exemplar activity with thecoe�cients that score the smallest distance is considered the best match to the observed activity.11



5 ExperimentsIn this section we discuss implementation issues and demonstrate our approach on two di�erentactivity domains, articulated and deformable body motions. We show the e�ectiveness of theproposed approach on large data-sets.In the �rst set of experiments, the temporal motion parameters recovered during tracking ofa human performing an activity observed from di�erent viewpoints are modeled and then therecognition performance evaluated. The second set focuses on modeling and recognition of fouractivities as seen from the same viewpoint. Finally, the third set demonstrates the modeling andrecognition of speech-reading from visual motion information. Thirteen letters of a single speakerare modeled and recognized using the optical-
ow of the mouth motion. In total, several hundredlong image sequences of complex activities were used. In these experiments we assume that theobjective is recognition of the activity from one cycle (or less) of its performance while ignoringperiodicity.5.1 Modeling and Recognition of WalkingWe employ a recently proposed approach for tracking human motion using parameterized optical
ow [11] (see Appendix). This approach assumes that an initial segmentation of the body into partsis given and tracks the motion of each part using a chain-like model that exploits the attachmentsbetween parts to achieve tracking of body parts in the presence of non-rigid deformations of clothingthat cover the parts. The work reported emphasized the low-level tracking component and suggesteda possible recognition strategy of the temporal parameters subject to changes of viewpoint andimaging parameters. In this subsection we employ our proposed approach to demonstrate the12



recognition of activities under varying viewpoints and imaging parameters. We assume that aviewer-centered representation is used for modeling and recognition of several activities. Let D(t)be the n dimensional signals of an observed activity. A total of �ve body parts (arm, torso, thigh,calf and foot) were tracked using 8 motion parameters for each part (i.e., n=40). In [11] it wassuggested that the following transformation does not change the the activity D(t)S �D(�t+ L) (9)This transformation captures the temporal translation, L, of the curve and the scaling, S, in themagnitude of the signal in addition to the speedup factor �. The magnitude scaling, S, of the signalaccounts for di�erent distances between the human and the camera (while the viewing angle is keptconstant) and the anthropometric variation across humans. The temporal scaling parameter � is:� > 1:0 leads to a linear speed up of the activity and � < 1:0 leads to its slow down. Figure 3describes the e�ect of each parameter on a single signal.Recognition of activity D(t) as an instance of a learned activity requires minimizing the error:E(�;L; S) = nTXj=1 �([S �D(�t+ L)]j � qXl=1 clUl;j ; �) (10)This equation can easily be rewritten and solved as in Equation (7), whereT (�; L; t) = t + (�� 1)t+ L (11)E(�c; �; L; S) = nTXj=1 �([S � (Dt(t)T (�; L; t) +D(t))]j � qXl=1 clUl;j ; �) (12)13



Since the error minimization involves a non-linear term we simplify the computation by observingthat the multiplication by a constant S can be substituted by dividing the coe�cients ci by S, andtherefore in actuality the recovered coe�cients are correct up to a scaling factor (i.e., recoveringci=S). The matching of coe�cients is done as in Equation(8). Upon �nding the best match thecoe�cients ci=S are compared with the matching exemplar coe�cients to compute the scaling factorS. Since computing S is overconstrained (q equations with one variable), the mean of S is taken asthe scaling factor (i.e., S = (Pqi=1(ci=mi))=q).The value of S is greater than 1:0 if (a) the activity is viewed at a closer distance than in training(therefore the perception of \larger quantities" is a result of the projection), or, (b) actual fasterexecution of the activity (which also leads to a temporal scaling for �).5.2 Synthetic ExperimentIn the following experiment we demonstrate the recovery of the parameters of the linear modelfor a \walking" sequence. We show that unregistered data, with respect to the exemplars, can bealigned using the linear transformation.Figure 4 shows the �rst two principal components of one parameter of the walking cycle, hori-zontal translation a0 (however, the forty parameters are modeled in the principal components) forsample walking cycles from 10 subjects viewed from the same viewpoint. Also, the �gure showsthe ratio of captured information, Pql=1 �l2Pkl=1 �l2 (�l is the l-th largest eigenvalue), as a function of thenumber of principal components used in reconstruction (�ve components are needed to capture90% of the information while the �rst component alone captures about 70%). This suggests that asingle component can capture walking well if viewed from a single viewpoint.Figure 5 (left) shows �ve temporal curves of one parameter a0 of a test sequence of a new14



subject. In this experiment we show the on-line recovery of transformation T for \walking." Wearti�cially start the recognition at di�erent frames during the \walking" test sequence (speci�callyfrom frame 1015) and recover the translation L and speed �. Notice that the tested activity beginsabout 35 frames into the \walking" model (Figure 5, left graph). A translation of 35 frames willalign the tested activity with the model. The graphs in Figure 5 (center and right) show therecovered translation L and scaling (� � 1) parameters of the \walking" activity as a functionof the starting frame. Notice that at frame 1015 a displacement of about 2 frames leftward isneeded to align the curve of Figure 5 to the \walking" activity model described in Figure 4. Thisdisplacement is increased as the input curve is translated in time. The scaling parameter indicatesthat the test activity is about 6% faster than the mean \walking" activity. This experiment alsoshows the e�ectiveness of the robust norm since it facilitates recognition even when some of thedata is inaccurate due to noise or missing (e.g., all parameters between frames 1015 and 1045 arezero).Figure 7 shows the cumulative captured information by the principal components for a singleperson's walking as viewed from ten di�erent viewing directions (see Figure 6). The angles includewalking perpendicular to the camera (towards and away from it). In this case 6 principal compo-nents are needed to capture 90% of the information in the motion trajectory of multi-viewpointobservation of walking. Figure 8 shows frames from test sequences for four walking directions.A set of 44 sequences of people walking in di�erent directions were used for testing. Themodel of multi-view walking was constructed from the walking pattern of one individual while thetesting involved eight subjects. The �rst six activity basis were used. The confusion matrix forthe recognition of 44 instances of walking-directions are shown in Table 1. Each column shows thebest matches for each sequence. The walkers had di�erent paces and stylistic variations some of15



Walking Direction Parallel Diagonal Perpendicular Away Perpendicular ForwardParallel 11 2Diagonal 3 14 1Perpendicular Away 6Perpendicular Forward 1 1 1 4Total 15 17 7 5Table 1: Confusion matrix for recognition of walking directionwhich where recovered well by the linear transformation. Also, time shifts were common since onlycoarse temporal registration was employed prior to recognition. The classi�cation shown in Table1 was based on the closest distance of the tested data set to a trained viewing direction based onthe estimated coe�cients.5.3 Recognition of Four ActivitiesIn this section we illustrate the modeling and recognition of a set of activities that we considerchallenging for recognition. We chose four activities that are overall quite close in performance:walking, marching, line-walking1, and kicking while walking. Each cycle of these four activities lastsapproximately 1.5 seconds.Figure 9 shows several frames from a performance of each activity by a subject and the trackingof body parts. We acquired tens of sequences of subjects performing these four activities as observedfrom a single view-point. Temporal and stylistic variabilities in the performance of these activitiesare common. Clothing and lighting variations also a�ected the accuracy of the recovery of motionmeasurements from these image sequences. The training sequences were temporally registered sothat the beginning of all activities is equal in terms of the perceived con�guration of body parts.Table 2 shows the total number of activities used for both modeling and recognition. The1A form of walking in which the two feet step on a straight line and spatially touch when both are on the ground.16



Activity Number of Training Sequences Number of Test SequencesWalking 7 15Line-Walking 7 28Marching 7 11Walking to Kick 7 12Table 2: List of activities and the number of occurrence of each in training and recognitiontraining instances of activities were used to construct the activity basis for the four activities.This activity basis is used in the testing stage on new instances of these activities in which newperformers and performances were employed.Figure 10 (left) shows the percentage of cumulative information captured by the principalcomponents as a function of the number of the principal components for 28 instances of fouractivities. It also shows how the �rst three principal components (which capture about 60% -whilethe fourth principal component captures only 4%) could classify the four activities (see Figure 10(right), in which the �rst three expansion coe�cients are shown for the 28 activities, the inter-activity variation exceeds the intra-activity variation). Recall that the coe�cients of the trainingexamples are computed by projecting each activity in the training set on each one of the basisactivities using scalar multiplication. The labels point to the four types of activities used in thetraining set. In the following recognition experiments, however, we use 15 activity bases to capturemost of the information about the activities.Table 3 shows the confusion matrix for recognition of a set of 66 test activities. These activitieswere performed by some of the same people who were used for model construction as well as otherperformers. Variations in performance were accounted for by the linear transformation. Up to 30%speed-up or slow-down as well as up to 15 frames temporal shift were accounted for by the lineartransformation used in the matching. 17



Activity Walking Line-Walking Walking to Kick MarchingWalking 11 3 3Line-Walking 3 24 1Walking to Kick 12Marching 1 1 7Total 15 28 12 11Table 3: Confusion matrix for recognition results5.4 Modeling and Recognition of SpeechIn this section we demonstrate the modeling and recognition of speech from visual informationusing optical 
ow measurements computed over long image sequences.The training set for this experiment consists of 130 image sequences containing a single speakerwho utters thirteen letters ten times (Figure 11). The duration of each utterance is 25 frames.We computed the image motion for each sequence in the training set using a robust optical 
owalgorithm [2]. The robust method is essential as it allows violations of the brightness constancyassumption that occur due to the appearance/disappearance of the teeth, tongue, and mouthcavity. We then randomly chose a subset of 793 
ow �elds from the training set of 3120 
ow �eldsand derived a low-dimensional representation using principal component analysis (for a detaileddescription see [5] and Appendix).Since the image motion of the mouth in our training sequence is constrained, much of theinformation in the training 
ow �elds is redundant and hence the singular values drop o� quickly.For the training data here, the �rst eight basis 
ow �elds account for over 90% of the informationin the training set and are shown in Figure 12.Image motion is represented as a linear combination of the basis 
ow templates: P8i=1miMi(x)(Mi is a 
ow template de�ned over a �xed rectangular region). Using this model, we estimatethe motion coe�cients mi as described in [5]. We then use the eight motion coe�cients computed18



between consecutive images to construct a joint temporal model for the letters. We consider eachspoken letter to be an activity of 25 frames in duration where eight measurements are computed ateach time instant. The 130 image sequences are used to construct a low-dimensional representationof the 13 letters. These 130 sequences can be represented by a small number of activity-basis asshown in Figure 13. Fifteen activity basis capture 90% of the temporal variation in these sequences.Figure 14 shows the eight recovered parameters (i.e., the motion-template expansion coe�cients)for each letter throughout a single image sequence using a test sequence not in the training set.This �gure illustrates the complexity of the modeling and recognition of this large data set.For the testing of recognition performance, we use 10 new data sets of the same subject repeatingthe same 13 utterances. A total of 130 sequences were processed. For each two consecutive frames inthe test sequences we computed the linear combination of the motion-templates that best describesthe intensity variation (see [5]) and use the linear coe�cients for recognition.The confusion matrix for the test sequences is shown in Table 4. The columns indicate therecognized letter relative to the correct one. Each column sums to 10, the number of each letter'sutterances. The confusion matrix indicates that 58.5% correct classi�cation was achieved. Whenthe recognition allowed the correct letter to be ranked second in the matching the success rateincreased to 69.3%. Recall that it is well established that visual information is ambiguous for dis-criminating between certain letters. In this set of experiments we observe some of these confusions.Nevertheless, this experiment shows the e�ectiveness of the representation we propose for modelingand recognition. 19



Recognized Letter A B C D E F G H I J K L MLetter A 5 1 1 2 2 1 1Letter B 9 1Letter C 6 1 1Letter D 1 1 2 5 1Letter E 7Letter F 2 2 5 1 1 1Letter G 2 2 1 7 1Letter H 1 8Letter I 1 1 4 1 3 1Letter J 1 6Letter K 1 4 1 7 1 1Letter L 1 1 2Letter M 2 3 6Table 4: Confusion matrix for recognition of 130 sequences of 13 letters5.5 Discussion of Experiments ResultsThe above experiments have demonstrated the performance of the proposed modeling and recog-nition approach. The following summarizes our observations on the computational aspects of thealgorithm:� The complexity of the algorithm is a function of the: number of free parameters, maximallength of activity bases and minimization parameters. In the reported experiments the num-ber of estimated parameters (transformation parameters plus the expansion coe�cients) hasbeen between 10-20. The length of activity basis has been 160 frames multiplied by the 40instantaneous parameters for articulated motion. Fifteen iterations of gradient descent wereperformed. The overall complexity is proportional to 20 � nT � 15 and is O(1).� The parameter search may converge to local minima if the initial alignment between theactivity models and observed activity is too far to be accounted for by the coarse-to-�nedi�erential formulation of the algorithm. To prevent local minima selection the algorithm20



is started with several initial alignments and the results are compared so that the globalminimum of the error function is chosen. Since the activity model duration is 160 frames forthe articulated movement we found that starting with 8 points is su�cient. Points are selectat 0; 20; 40; 60; 80; 100; 120; 140 frames relative to the onset of the model.� The algorithm can be used for on-line activity recognition. For example, once several tens offrames of an activity have been acquired, recognition can be started and then repeated foreach incoming frame. Figure 15 shows a few frames from an on-line experiment for recognitionof \marching." The �gure shows that a temporal translation of about 7 frames and ordinaryspeed are recovered (bottom left and center graphs, respectively in each frame). Also it showsfor four sample frames the distance of the observed activity from the closest sample in thetraining set of activities (see the bottom right graph in each frame). This distance is initiallylarge since there are only a few frames of input (see the �rst 50-70 frames), then it decreasesrapidly as more frames are acquired and the approximation of the observed data by the basisactivities becomes closer to one of the known activities (an activity from the training set).Eventually this distance goes down to zero if the activity closely resembles a training activity.6 ConclusionsIn this paper we proposed and tested parametric models for activity modeling and recognition whena large number of temporal parameters are recovered from an image sequence. Principal componentanalysis and linear transformations were employed to economically represent these activities ande�ectively recover and recognize instances of learned activities. This approach was demonstartedon large sets of image sequences for recognition of both articulated and deformable motions.21



The modeling and recognition algorithm proposed is simple to implement. The principal com-ponent analysis determines the proper representation based on the data. Robustness to severalsources of variation in performance of activities is an important issue that can be challengingto achieve. The employment of linear transformations in the recognition allowed us to recognizeactivities even when time scaling and shift were encountered.The formulation of an activity-preserving transformation can potentially account for a widerange of variations of temporal parameters that result from viewpoint changes and imaging pa-rameters. In this paper we focused on variations of the well understood linear model. The lineartransformation, however, is a uniform transformation and therefore is limited to capturing globalvariations in execution of activities. The formulation we proposed allows future incorporation ofnon-uniform transformations.AcknowledgementsWe would like to thank Shanon Ju for providing the code for articulated body tracking used inthe experiments. Also, we thank Mubarak Shah and Shawn Dettmer for providing the data setsfor the speech recognition experiments.References[1] M. Allmen and C.R. Dyer. Cyclic Motion Detection Using Spatiotemporal Surfaces and Curves,ICPR, 1990, 365{370.[2] M. Black and P. Anandan. The robust estimation of multiple motions: Parametric andpiecewise-smooth 
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AppendixArticulated Motion Estimation AlgorithmIn the following we summarize the articulated motion estimation model proposed in [11]. Thismodel assumes that each body part is a plane moving in a perspective scene. The optical 
ow ofeach body patch is given byu(x; y) = a0 + a1x+ a2y + a6x2 + a7xy; (13)v(x; y) = a3 + a4x+ a5y + a6xy + a7y2; (14)where a = [a0; a1; a2; a3; a4; a5; a6; a7] denotes the vector of parameters to be estimated, andu(x; a) = [u(x; y); v(x; y)]T are the horizontal and vertical components of the 
ow at image pointx = (x; y). The coordinates (x; y) are de�ned with respect to the centroid of the whole body region(i.e., a shared center for all parts).To estimate the motion parameters, as, for a given patch, s, we make the assumption that thebrightness pattern within the patch remains constant while the patch may deform as speci�ed bythe model. This brightness constancy assumption gives rise to the optical 
ow constraint equationrI � u(x; as) + It = 0; 8x 2 Rs (15)where Rs denotes the points in patch s, I is the image brightness function and t represents time.rI = [Ix; Iy], and It are the partial derivatives of image brightness with respect to the spatialdimensions and time at the point x.For human articulated parts, we assume that each patch is connected to only one preceding25



patch and one following patch; that is, the patches construct a chain structure. For example, a\thigh" patch may be connected to a preceding \torso" patch and a following \calf" patch. Eachpatch is represented by its four corners. We simultaneously estimate the motion parameters, as, ofall the patches. The total error of the motions of the patches (from 0 to n)E = nXs=0Es = nXs=0 Xx2Rs �(rI � u(x; as) + It; �) (16)where � is a robust error norm. Since the connected patches motions must agree at the points ofattachment, a better constrained equation is given byE = nXs=0( 1jRsjEs + � Xx2As kx+ u(x; as)� x0 � u(x0; a0)k2) (17)where jRsj is the number of pixels in patch s, � controls relative importance of the two terms, As isthe set of articulated points for patch s, a0 is the planar motion of the patch which is connected topatch s at the articulated point x, and k � k is the Euclidean norm. The use of a quadratic functionfor the articulation constraint re
ects the assumption that no \outliers" are allowed. The secondenergy term (the \smoothness" term) in Equation (17) can also be considered as a spring forceenergy term between two points. In the examples shown in this paper we track �ve body parts;thus recovering 40 parameters.Deformable Motion Estimation AlgorithmIn the following we summarize the deformable motion estimation model proposed in [5]. Thecomputation model consists of two components: modeling principal 
ow templates and estimationof image motion using these templates. Consider the case of mouth motion during speech, we assume26



that a region of interest, R, has been located and normalized in size to a desired rectangular size(e.g., using the planar face registration in [4]).The �rst component consists of two stages. In the �rst stage the dense optical 
ow of imagesequences with training samples of the mouth motions is computed using [2]. In the second stage aprincipal component analysis (PCA) of the instantaneous 
ow �elds of the training set of images iscomputed. The output of this modeling component is a set of q basis 
ow templates ~mi; i = 1; :::; q,(q � number of input 
ow �elds), each basis vector consists of 2 � n elements (n is the number ofpixels in the region of interest). The instantaneous 
ow between any two consecutive images canbe well approximated by ~fk = qXi=1 ci ~mi (18)where the �rst n elements represent the horizontal 
ow and the remaining n elements represent thevertical 
ow at the n pixels.The second component formulates an objective function that seeks to best explain brightnessmovement in a new image sequence using the set of basis 
ow templates. This is given byE(~c) =XR �(rI � qXi=1 ci ~mi) + It; �) (19)where recovery of the ci coe�cients that minimize the errorE is performed. Details of the minimiza-tion can be found in [5]. The coe�cients ci are the parameters used in the recognition experimentsin Section 5.4. 27



Captions� Figure 1: Frames from an image sequence of \walking" (top row), �ve parts tracking of thevisible human body parts (arm, roso, thigh, calf and foot, second row) and two sets of �vesignals (out of 40), horizontal translation and image rotation that are recovered during theactivity (torso, thigh, calf, foot and arm).� Figure 2: The parameterized modeling and recognition of signals.� Figure 3: The e�ect of each parameter of the transformation on a signalD(t). The magnitudescaling (top right), temporal translation (center right) and temporal scaling (bottom right)of D(t).� Figure 4: The cumulative information captured as a function of the number of principal com-ponents (top) and the �rst and second principal components (center and right, respectively)for 10 di�erent people walking from a single view for the horizontal translation parameter ofthe �ve body parts, (torso, thigh, calf, foot and arm).� Figure 5: The horizontal motion parameter a0 of the �ve tracked body parts of a testsequence used in recognition and evaluation (left graph) and temporal translation and timescale recovery for the \walking" input curve starting at frame 1015 up-to frame 1065 (i.e.,translated).� Figure 6: The experimental set-up in the multi-view walking sequences.� Figure 7: The cumulative information captured as a function of the number of principalcomponents for one person observed walking from 10 di�erent viewing directions.28



� Figure 8: Tracking examples for four walking directions, forward, diagonal-45 degrees,diagonal-75 degrees and away (top to bottom, respectively).� Figure 9: Frames from image sequences of \walking," \marching," \kicking" and \linewalking" and �ve part tracking.� Figure 10: Cumulative information captured by the 28 basis activities (left) and the ex-pansion coe�cients of using the �rst three activity basis for the 28 activities (right) in whichclassi�cation among activity is clearly visible (c1; c2 and c3 are shown with the respectivedelineation of the type of activity in the training set).� Figure 11: Example frames for one letter in the training set.� Figure 12: First eight basis 
ow �elds computed by PCA. They account for 90% of theinformation in the 3120 training 
ow �elds.� Figure 13: Cumulative variation captured by 130 basis vectors of the 130 sequences.� Figure 14: The eight coe�cients of the motion-templates computed for each of 13 lettersduring a complete utterance.� Figure 15: Tracking and on-line recognition of a marching activity. Each frame describesthe temporal translation, temporal speed and distance of the observed data with respect tothe training examples.
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Figure 8: Tracking examples for four walking directions, forward, diagonal-45 degrees, diagonal-75degrees and away (top to bottom, respectively).37



Figure 9: Frames from image sequences of \walking," \marching," \kicking" and \line walking"and �ve part tracking (top to bottom, respectively).38
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Figure 11: Example frames for one letter in the training set.

40



Figure 12: First eight basis 
ow �elds computed by PCA. They account for 90% of the informationin the 3120 training 
ow �elds.
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Frame 30 Frame 110
Frame 190 Frame 230Figure 15: Tracking and on-line recognition of a marching activity. Each frame describes thetemporal translation, temporal speed and distance of the observed data with respect to the trainingexamples (left, center and right, respectively).
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