
A Visual Dialogue�

�If you need to reference this visual dialogue� the paper �Visual Space�Time Geom�

etry� A Tool for Perception and the Imagination�� Proc� IEEE� July ����� contains

some of the material� unfortunately in prose�
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Preamble

This document is devoted to the study of visual space�time� speci�cally the
development of �D models of the �possibly changing� world from images of it�
This problem� hereafter called structure from motion� has acquired special im�
portance because it is at the center of many applications� One such application
that we consider important is �D video and photography� the ultimate judge of
a structure from motion theory�
The basic framework of structure from motion has� for the most part� been

pursued as in the following diagram�

Find Correspondence

�

Compute
Camera
Geometry

�

Compute Scene Structure

�

Correspondence consists of �nding image features which have been generated
by the same world feature� These features can be points� lines� corners� or some
other feature� Most researchers will say that correspondence is a 	di
cult step��
but the truth is that no one has been able to solve the problem in the three
decades of vision research� Tracking has had some success in limited domains
where there are obvious corners to track� but other more natural scenes have
proven impossible for current methods�
Most in the computer vision community would say that the problem of scene

reconstruction has been solved� and indeed it has been for points and lines� but
not when the input is images� For example� the reconstruction problem for
patches of various textures has not been addressed in great detail at all� For
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instance� the depth of a patch with a homogeneous texture cannot be found�
but if one is interested in projecting to a nearby viewpoint� it doesn�t matter�
Texture is an integral part of reconstruction�
The middle step of camera geometry computation has been the subject of

much of the research for the past two decades� The �rst major result was by
Longuet�Higgins in �� ���� in a paper which described the essential matrix�
This matrix relates the relative position and orientation of two cameras with
image points generated by the same world point� Once this was understood� the
next step was to relate lines among images� Since image lines in two cameras do
not provide any constraint� the constraint must operate on at least three cam�
eras� Indeed� the trilinear constraint was found by Spetsakis and Aloimonos in
��� and published in ����� and this constraint relates not only lines but also
points in three images� The last advance on the second step occurred when the
above constraints were converted to the uncalibrated sense� The projective gen�
eralization of the essential matrix was introduced as the fundamental matrix
by Faugeras ��� and Hartley ����� following a paper on a
ne structure from
motion by J� Koenderink and A� van Doorn ����� and the work of R� Mohr on
projective geometry and vision ����� The projective generalization of the trilin�
ear constraint was introduced as the trilinear tensor by Shashua in ��� ����
These papers formulated the constraints� Finding the parameters of these

constraints has been the subject of many papers since then� The most basic is
the eight�point algorithm in ����� the same paper in which the essential matrix
was introduced� Many other methods for �nding this essential matrix have
been proposed since then� but the simplicity and reasonable accuracy of this
algorithm ���� has made it quite useful� The trilinear constraint has been more
di
cult to �nd� because it is more poorly conditioned�
Recent use of bundle adjustment ��� has improved the output of these pa�

rameter estimations to some degree� but the precision that is desired by many
has not been reached� Bundle adjustment is predicated also on the solution of
the correspondence problem� The RANSAC ��� method provides a crude sort
of way to throw out bad correspondences based on the geometry� but is not
useful for obtaining dense correspondences in natural scenes� Many references
on developments can be found in the following book on the topic �����
The �eld has reached the stage where we believe we have solved the �nal

two steps of the process� but still do not have an insight into how to generate
the input to these stages� Despite the fact that we have a well�developed theory
about points and lines� there still does not exist an automated system which
calculates structure from pictures or video streams� To get past this we need to
solve the correspondence problem� And to do this� we need to rework the entire
idea of a once�through process�
This is no simple task� and it appears to require a di�erent way of thinking�

and new tools� We present here the beginnings of a new theory that solves this
problem� For lack of a better term� we named it Harmonic Computational Ge�
ometry� in order to emphasize the marriage of Harmonic Analysis and Geometry�
The theory introduces new atoms for structure from motion and these are the
frequencies inside image patches� We �nd new constraints� like the harmonic
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epipolar and harmonic trifocal constraints� which now relate directly outputs
of signal processing �lters to the �D geometry� The idea that visual perception
is realized through relationships among outputs of various �lters applied to the
image is very appealing to the theorist and has had a few come�backs over the
years ���� ���� From one point of view� the introduced theory points the way to
performing signal processing in �D as opposed to in �D� e�g�� the image plane�
Currently� the way the community deals with this problem amounts to a sep�
aration of geometry and statistics� The shape of the scene is recovered in the
form of� let�s say� a mesh and then the image texture is 	mapped� on to the
mesh� The texture� however� contains valuable information that can be taken
into account in recovering structure from motion� The introduced theory pro�
vides a tool for this� Ultimately� this theory develops theorems that can be used
to decide whether correspondence can be established at an image patch and if
it is possible� to �nd it� We could have named it Geometric Signal Processing�
a term already used by the Graphics community to denote �ltering operations
on meshes ����� The time appears to be ripe for this theory as researchers ����
have started relating basic signal processing operations to fundamental oper�
ations in graphics� In addition� prominent members of the signal processing
community have been calling for the introduction of more �D geometric consid�
erations in the analysis of the signal ����� and computer vision researchers have
started looking at texture as it relates to multiview vision following di�erent
approaches ���� ���� The feeling that exploitation of local structure through
texture is feasible is evidenced by recent works on registration and on texture
analysis �����
We thought that the best way to introduce this new material is through

a dialogue� The new theory is built on top of the state of the art� So� in
order to present it adequately� we need to bring the reader to an appropriate
level� We do this� however� in a rather e
cient and exciting manner� even for
the specialist� because we develop the geometry of the state of the art in �D
reconstruction in a new� very concise yet intuitive way� The dialogue is an
exchange among three discussants� named Socrates� Archimedes and Euclid�
after the giants of antiquity� In Act I� Socrates explains to the other discussants
why he called for them� He introduces the problem of making �D models from
many images and argues about its extreme importance� In Act II� Archimedes
explains the state of the art� that is� �D reconstruction using points and lines in
images� In so doing� he introduces the nomenclature that will be used later� In
Act III� Euclid points out some inherent limitations in �nding points and lines
in images� There is unavoidable statistical bias� incidentally� this bias explains
�rather predicts� a very large number of geometric optical illusions previously
considered to be unrelated� It�s also fun stu� for classes�students love illusions�
In Act IV� Euclid shows that the bias experienced in locating points and lines
translates to �D� creating distortions of the actual shape� At this point� the
state of the art and its limitations are established� In Act V� Socrates gets his
two friends to think about the correspondence problem in a new way� During
this exercise� they come up with a new constraint not known before� and they
understand two basic properties of the correspondence problem� The climax
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is reached in Act VI� where Archimedes and Euclid present a few principles of
the framework for harmonic computational geometry� a new tool for matching
images and making �D models� To make the document accessible to a wider
audience� we had to reduce the formalism and emphasize intuition� As a result
some of the topics could not be treated in great depth� but we believe that the
specialist can easily make the connection�
We are interested in both visual perception and �D photography and we

wrote this dialogue to satisfy our intellectual curiosity� For our professional
colleagues in computer vision we hope to convey the excitement behind the so�
lution of the correspondence problem� For researchers in graphics we hope to
introduce a new �eld of inquiry� which is the analysis part of geometric signal
processing� For our colleagues in computational geometry we hope to show a
new set of problems where geometric structures get married to harmonic com�
ponents of signals that is computational geometry for surfaces that are painted
or textured� like the surfaces of our visual world� For the workers in statistics
and signal processing we hope to convey the notion that signal processing could
take place on a �D surface as opposed to a plane �the image�� this notion which
is not foreign to some mathematicians since they are already working on signals
on the sphere as opposed to the plane� invokes a rich set of interesting research
questions�
For this reason� we are sending this dialogue as a letter to Jan Koenderink

and Olivier Faugeras entitled 	New Atoms for Structure fromMotion� Harmonic
Computational Geometry�� to Leo Guibas and Bernard Chazelle entitled 	Har�
monic Computational Geometry�� to Pat Hanrahan and Takeo Kanade entitled
	�D Video and Photography through Harmonic Computational Geometry�� to
Stuart Geman� Roger Brockett and Stephane Mallat entitled 	Signals and �D
Geometry� The Mathematics of the Correspondence Problem�� to Jitendra Ma�
lik and Tommy Poggio entitled 	Features and Signals in Visual Space� The
Mathematics of the Correspondence Problem�� to Peter Shroeder and Al Barr
entitled 	Geometric Signal Processing� The View from Vision�� and to Ruzena
Bajcsy and Shankar Sastry entitled 	Signals and Robotics� The Harmonic Com�
putational Geometry of Visuomotor Patterns�� The document is accessible at
http���www�cfar�umd�edu�users�yiannis�dialogue���videos�main�html�



Act I� Why Visual

Space�Time

Soc� I called for you because I need your help� I have been studying advances
in many disciplines and I think people are getting close to something that will
revolutionize both technology and the sciences of the mind�

Arc� Euc� What is that�

Soc� It is what I call the understanding of visual space�time geometry� Some�
thing like three�dimensional photography and video� To be more speci�c� the
ability to create perfect �D models of the world from images� This will con�
stitute an amazing new tool� whose use will change the way we think about
many problems� including language� thought and robotics� Not to mention that
the new technology will radically change human culture� I am very excited
about this and that�s why I asked to see you� You have spent your life thinking
about numbers� forces� shapes and patterns of all sorts� I would like to �nd out
whether it is possible to develop this tool and exactly how� because as I read
and study the state of the art� creating perfect �D models is still not possible�

Arc� I see� Now I understand why you called me� I am� among other things�
a photogrammeter and I measure things using images� And I guess you called
Euclid to make sure that in my engineering excitement I don�t cut any corners�
Is this the case�
Soc� Well� it is always nice to have Euclid around� Besides� we are all friends�

Euc� Why do you perceive this as such an important tool�

Soc� If you are interested� I will show you the letters I am writing to Chomsky
and Fodor� Beyond obvious applications to technology� the answers to these
questions may help settle a debate between the two dominant paradigms in the
study of cognition� Most of the work centers around the basic ideas of Plato
and Aristotle on the double face of knowledge� Is knowledge coming from the
inside of the mind or from its outside� Debate has gone on for centuries and
in our day it has taken the following form� a sensorimotor theory of cognition
vs� a language�based or symbolic theory� The sensorimotor theory amounts
to the belief that higher cognition makes use of the same structures as those
involved in sensorimotor activity� On the other hand� a language�based theory
views cognition as shaped for the most part by language�like structures� These
structures are considered discontinuous with the more primitive sensorimotor
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structures and they provide a representation for objective reality that subserves
human reasoning ability�
Euc� Is there no dominant view between these two camps�
Soc� Not really� They both have good arguments� The dominance shifts
over time� with the linguistic paradigm having dominance in our days and for
most of the last century� This paradigm is compatible with the formalisms
of theoretical computer science� So� the theories developed here are couched
in terms of computer logic terminology and they have an air of technological
sophistication� But they are now stuck because they cannot deal well with
meaning�
Euc� So you perceive that it is now the turn of the sensorimotor people�
Soc� Exactly� They have a very good theory but technology was not of much
help to them� The sensorimotor people are rather vague when they talk about
models of the world� They speak in terms of 	an activated memory trace of
sensorimotor experience�� What could that be�
Sensorimotor people are heavy on phenomenology and consider representa�

tions of the world as images with their associated motoric representations� This
has given them numerous problems� For example� Pylyshyn has very success�
fully argued against the idea that representations of the world are like images�
He said that if that was the case� then we would need someone to look at these
images� some sort of central authority that can interpret them� This however
gives rise to a homunculus� that we know does not exist� So� models of the
world cannot be like images� They have to be something else� and some sym�
bolic structure suits him �ne�
Euc� That�s a forceful argument�
Soc� Certainly� but it is too much of a philosophical argument and not very
useful� I mean� we know that we have models of the world� I can ask you to
think� imagine� visualize your house� a particular room� the face of someone�
some performing an action� and many other things� When you do this you
produce images like the ones you would see if you were there� Right�
Euc� Yes� sort of� Not exactly the same� somewhat poorer� but similar�
Soc� Good� But you can produce these images for any viewpoint you want� I
mean� if you imagine your children dancing in your living room� you can 	see�
them from any viewpoint�
Euc� That�s true I can 	see� them in a video where I can move the camera in
any way I want�
Soc� Exactly� Now� to do that you must have some �D model of that scene�
How it is in � dimensions� It�s shape� movement� and its color� Well� how do
you talk about a model like that� a sensory model� An easy way is to consider
a view of that model� an image of it� That�s what the sensorimotor people have
been doing in essence� If you say then that sensorimotor representations are not
images� but �D models of the scene� then Pylyshyn has no argument� because
models like this and symbolic models have really no di�erence� Philosophers
are not very familiar with the mathematics required to make such �D models
and to describe them� When you can make models like that� the confusion will
disappear�
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Imagine then the possibility of making �D models of the world� like making
a �D photo of a scene and having the capability to manipulate this model� I
will tell you later how language and thought can be understood using these
models� Do you remember how George Boole named his fascinating monograph
on logic� He called it 	An Algebra of Thought�� But thought does not only
have an algebra� It is such a complicated and multifaceted thing that it has
a geometry as well� And the visual space�time geometry is the most basic
geometry of thought�
Euc� If I understand you correctly� you claim that space and time existed before
thought� Thus� thought has to be based on space�time and as a result it has
a geometry� Studying this geometry constitutes a new tool in the study of the
mind�
Soc� Exactly� The use of this tool will uncover basic principles of the mind
that could not be achieved before� using the tools of logic� The interaction of
this geometry with Chomsky�s Universal Grammar is a gold mine in terms of
important questions�
Euc� I like this a lot� I never thought about the geometry of thought� But�
I have two questions� Are humans and animals computing perfect �D models
of the world� You also mentioned that this technology will change our culture�
Why is that�
Soc� No� humans and animals don�t compute perfect �D models of the world�
Actually� it is now understood that living systems 	inhabit their data struc�
tures�� This is a Kantian view� It is quite a complicated problem and you
shouldn�t worry about it at this stage� Just try to get to perfect �D models�
humans and animals obtain subsets� rather� functions of them�� As for your
second question� suppose you can make excellent �D models of the world as
it changes� suppose further that you can manipulate these models� Then you
can use computers to put them together and make movies� You will be able to
express yourself visually� and perfectly portray an event that never happened�
Think of it this way� Right now we can perform symbolic editing on structures�
What if you could do �D video editing�
Euc� Instead of writing a paper about something� I would be making a movie
about that something and it would take me about the same time� right�
Soc� Right� We are visual creatures� The possibilities are endless�� But tell
me� Archimedes� what is the state of the art� Can you automate this process�
Let�s say I have a video camera �or many� and I go around and �lm something in
the world� Can I then use the video�s� to develop �D models of that something�
I am interested in doing it automatically� Let�s not worry about cognitive things
like recognizing something� There are surfaces out there with shape� movement�
texture and color� I want to make �D models of them� as best as possible� I want
�D photography� or� rather� �D video� Can I do this� It is clearly a geometric

�It is a fascinating problem to discover the nature of the representations humans develop
from images� Human visual space is not Euclidean� ���� provide an interesting account�

�Socrates considers the quantum of the mind to be action� Actions involve our bodies and
the world� In his view� thought and language are based on the representations of action� that
is� space�time as perceived or learned�
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problem� Tell us�
Euc� But how about action� To come up with good action representations is
very hard�
Soc� Sure� they consist of patterns mixing motoric descriptions with space�
time descriptions� But before you �nd them� you should be able to measure
them� in �D�
Euc� Measure them�
Soc� Yes� Isn�t that something necessary for building a scienti�c discipline�
If you didn�t have cameras to take pictures �and save them into a computer��
would you be able to do computer vision�
Euc� Of course not�
Soc� In the same way� if you want to study action� you should have a pic�
ture of it� right� So� put lots of cameras around� look at an action from many
viewpoints� and build it in �D� This will help you �nd the representations� It
doesn�t mean that humans use this kind of representation� That�s why I sug�
gested studying visual space� with the goal of capturing the �possibly changing�
world in �D� So� can it be done�



Act II� State of the art

Arc� There has been a lot of progress on this problem� People don�t quite have
it yet� but they are getting close�
Euc� As far as I know� there haven�t been many conceptual advances during
the past ten years or so� People are getting closer to the solution but there is
this extra mile they have to go to make things perfect� to automate the process
that will create amazingly accurate �D models� There is no theory for that� at
least nothing on the horizon� The existing theory has reached its limitations�
Arc� I disagree with that statement� The existing theory can get you very far�
Euc� I have seen a few impressive demonstrations but the scenes are carefully
selected and in general the whole thing requires some manual intervention� The
moment an excellent visual processor like our minds enters the computation loop
by selecting the scene� it becomes part of the system� and our investigations give
us no insight into the success of our approach�
Soc� There is no point in arguing� Every theory reaches its limitations� That�s
pretty well known� Maybe to go that extra mile� we need to take a few steps
back� Why don�t we take things from the beginning� to see why we can�t get
perfect results�
Arc� The ideas behind the state of the art are pretty easy� actually� Let�s
say you look at the world from at least two positions� In a video taken by a
moving camera or cameras you have many positions� but let�s assume we have
at least two� We will refer to them as views� viewpoints� or even cameras� As
you can understand� each camera has its own coordinate system� There are two
important processes you need to understand before you can make �D models�
These two processes are the �D transformation and the �D transformation�
Soc� What are they more precisely�
Arc� The �D transformation relates the two viewpoints� This is a rigid motion
transformation� consisting of a translation and a rotation �six degrees of free�
dom�� This transformation models the �D motion of the eye �or camera� �Fig�
����
The �D transformation relates the pixels in the two images by a transfor�

mation mapping points in the �rst image to the points in the second image� A
point pair is mapped to each other if they are the projection of the same scene
point �Fig� ����� When the viewpoints are close together� this transformation
amounts to a vector �eld denoting the velocity of each pixel� called an image
motion �eld� Finding the �D transformation is the well�known correspondence

�



� Visual Space�Time Geometry

M

Figure ��� The transformation M relates the two cameras

Figure ���� The �ow �eld is the �D transformation between the images
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M

Figure ���� Given correspondences� we can reconstruct the scene

problem�
Soc� I see� It�s pretty clear now how you can make �D models given these
two transformations� If you know the �D transformation� you know how the
coordinate systems of each viewpoint are related to each other� You can put
the �rst camera anywhere you want and the �D transformation will tell you
where to put the second camera� Since you know the �D transformation� you
can bring the rays from each camera center to corresponding points in each
image� These rays will intersect in space at a point in the scene� If I then do
this for all the points in the image� I am going to get a �D model� at least for
the visible part of the scene� I am going to get depth� right� �Fig� �����
Euc� In the presence of noise� however� the reconstruction of points is ill�
de�ned� Also� when talking about reconstructing the world� we would rather be
concerned with patches than points�
Soc� Euclid� we�re discussing the state of the art right now� We will come back
to your objections later� Archimedes� was my summation of model creation
correct�
Arc� I couldn�t have said it better� We are speaking� however� of �nding all
that we know directly from images� In this case� there is a small ambiguity�
although not very important� You cannot �nd all six parameters of the rigid
transformation� You can �nd the rotation but for the translation you can only
�nd the direction� So� you have an ambiguity in placing the second camera�
there are many locations available� As a result� you cannot �nd the exact �D
model of what is visible� This is called the scale ambiguity� The �D object in
view could either be small and close to the cameras or larger and farther away�
You can arbitrarily decide on the scale� But you will get the correct shape �Fig�
�����
Soc� Very good� But what if the scene changes�
Arc� Then I assume that you want to make models of the action taking place�
right�
Soc� Of course�
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Arc� Knowing exactly how the two viewpoints and the images are related
provides the exact position of each scene point in space� Regarding models of
action� knowing the exact velocity of each image point� by projecting it back
onto the scene� for which a model is available by the previous step� we can �nd
the �D motion vector for each scene point at every time instant� The sequence
of evolving �D motion �elds constitutes a general model of action �since action
is the extension of shape into time��
Soc� Why don�t we get into the

Figure ���� Images cannot disambiguate
size di�erences

C

1
p

2
p

3
p

Figure ���� The image plane cuts the pen�
cil of rays

geometry in somemore detail� Let�s
say you start with two images� What
then�
Arc� Then I will identify features
in both images� points and lines�
and I will solve for the �D and �D
transformation� After that the �D
model of the scene will pop out�
Euc� The algorithm is getting ahead
of our axioms� In an actual camera�
we need to know what image point
and lines are� I de�ned these ob�
jects� but that was for an idealized
world� They were never meant to
be accurate for a non�ideal world�
We need a new set of atoms�
Soc� We�ll get back to your de�ni�
tions� Euclid� First let us see what
the state of the art is� Archimedes�
how will you solve for these two trans�
formations� Maybe you can show
us some equations�
Arc� Sure� but I will try to keep
them simple� I will show you how
from point and line correspondences
you will get to the �D transforma�
tion� The community has devel�
oped a few geometric constraints re�
lating point and line correspondences
to the �D geometry� These are in
general multi�linear constraints� I
will tell you about the quadrilinear�
the trilinear and the bilinear or epipolar constraints� That�s basically the state
of the art�
Let�s start from the camera� How do you make one� You simply consider

all the light rays �straight lines� passing through one point �the camera center�
and then you cut them with a plane �the image plane� retina or the �lm� and
you get an image� The whole thing is a geometric model of an eye or a camera
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�Fig� �����
Soc� Hmm� Don�t I need to know
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Figure ���� A calibrated image plane

a � �b� c� � bcTa� caTb

aT�b� c� � cT�a� b�

jabcj � jcabj

Figure ���� Some vector identities

the relationship between the cam�
era center and the image plane� It
seems to me that if I eventually need
to measure things in the world I
would need to know the angle be�
tween di�erent rays� for this� I would
need to know the distance between
the center and the image plane� I
would also need some way to mea�
sure distances on the image and that
in turn would depend on how the
photocells are placed�
Arc� This is true� If you don�t
have any of this information then
you have what is known as an un�
calibrated eye or camera� In this
case all you know is that your cut�
ting surface is a plane� But if you
know the relationship of the camera center to this image plane and you also
have a way to denote di�erent locations on the image precisely� then you have
a calibrated eye of known parameters� Simply put� you have a calibrated eye
when you know the ray de�ned by the center and any image point �Fig� �����
But the e�ect of the calibration parameters on the image is simple� as you will
soon see�
It turns out that the equations are much easier if we use vectors� so we�ll

stick with those� All vectors used will be column vectors and I will transpose
them as necessary� I will use now and then the identities shown in �gure ����
Both �T ��� �� and j���j are used to denote the triple product�
Finally� I will use homogeneous coordinates for the image points and lines�

Remember that if for any object s � S with coordinate s� the coordinate �s
also refers to s for any � � R� then the coordinates are said to be homogeneous�
The coordinate � does not represent any object s � S�
Soc� I guess homogeneous coordinates will allow you to use linear algebra in
projective spaces� Good choice�
Arc� Let�s take a world point P � R�� We can represent such a point in a
particular coordinate system as

P �

�
� X

Y
Z

�
�

Consider now the ray OP � from the camera center O to point P � It creates the
image point p� Geometrically� I will represent image point p with the ray OP �
That way� the image points exist in the projective plane P��
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Figure ���� Four points de�ne a homography

Soc� I see your motivation� This projective space P� has the advantage of
duality between points and lines� which makes it extremely easy to consider
both and transform formulas which consider one into formulas which consider
the other�

Arc� Exactly� So� an image point can be represented in a particular coordinate
system as p � �x y z�T with these coordinates being homogeneous�

Soc� One moment� I notice that the coordinates of the world and image points
are both ��vectors� but one is a Euclidean space of dimension � and the other
is in the projective plane� Can you mix them�

Arc� Of course� as long as you know what you are doing� You can think of a
camera as a device for considering the coordinates P of a point P � R� to be
coordinates of a point p � P��

Soc� That�s really cool� If I have a coordinate system in �D with its origin
at the camera center� then the image of a point P � R� with coordinates P �
�X Y Z�T is the ray OP � P� with coordinates �X Y Z�T� Surely the map
between world and camera coordinates can�t be so simple� I have heard so
much about calibration of cameras�

Arc� Right� so let me show you about changes in a camera� Keep the camera
center �xed and move the image plane to another position� Each of the planes
cuts every ray at a point which is the image of the point in the world from where
the ray is coming� The images that you get are di�erent� but they are related in
an interesting way� The images formed by cutting the rays with di�erent planes
can be mapped to each other with a very easy map� It is a special map that
depends only on how you map four points not lying on a straight line �Fig� �����

Soc� You mean if I know that points A� B� C and D in the �rst image map
to points A�� B�� C� and D� in the second� then I know where every other point
of the �rst image maps to in the second image� That is� this map that sends
the points of the �rst image to points of the second image depends only on how
you map four points�

Arc� Yes� This map is called a homography� and it is a linear transformation�
If ray x in the �rst image maps to ray x� in the second� then x� � Hx with H
a �� � matrix� and it in general is a projective transformation�
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Soc� Very clear� So� as a �nal step before the image is formed I have to linearly
transform the rays with a homography which I guess depends on the calibration
parameters�
Arc� Yes� It is homogeneous and has eight degrees of freedom� Usually the
three rotational parameters are not considered 	calibration� and the �ve re�
maining calibration parameters are used� These are the principal point �the
projection of the camera center on the image plane�� the focal length or the
scales of measurement along two axes on the image plane de�ning a coordinate
system on the plane �i�e�� the distance between the camera center and the prin�
cipal point or the units of measurement along two axes� and the angle between
the axes� The homography is simpler� It is actually an a
ne transformation��

Soc� Great� Now let�s use these homo�

Figure ���� The rotationB and trans�
lation T de�ne a camera

Figure ���� Cameras with no rota�
tion B are a translation away from
the �ducial coordinate system

graphies in a way which makes it easy
to talk about images taken by large num�
bers of cameras�
Arc� Actually� homographies are tricky
to apply to large numbers of cameras
if you think of them as a relation be�
tween two cameras� For large numbers
of cameras it is often better to use the
concept of a �ducial coordinate system
so we do not have to single out any one
camera�
Soc� So what is a system in which it
will be easy to talk about large numbers
of cameras�
Arc� As you recall� the coordinates of
a �D point become the coordinates of
the image point �e�g�� the ray�� How�
ever� our world points exist in one �du�
cial coordinate system� while the image
points exist in the particular camera co�
ordinate systems� Therefore our cam�
era is de�ned in relation to this �ducial
coordinate system as follows�
A camera C is a map C � R� �

P
� from world points to image points�
Given a �ducial coordinate system� we
may represent this mapwith a pair �B�T��
where B � R�� R� is a linear function
�represented by a ��� matrix�� and T
is a ��vector representing the camera

center� The action of the map on a world point coordinate P is�

C�P� � B � �P� T�

where C�P� is considered as a member of P��

�If fx � fmx� fy � fmy represent the focal length of the camera in terms of pixel dimen�
sions in the x and y direction� s the skew parameter encoding the angle between the two axes
and x�� y� the principal point 	image center
 then

H �

�
�

fx s x�
� fy y�
� � �

�
A



� Visual Space�Time Geometry

Soc� I see� T is the translation and B is the rotation between the camera
coordinate system and the �ducial world coordinate system� So� you put the
rigid transformation in the de�nition of the camera� Not bad� �Fig� ����
Arc� Well� B is more general than that because it can also hide the calibration
information� B was de�ned as a linear function� not necessarily an orthogonal
rotation matrix�
Soc� I have seen cameras de�ned in terms of projection matrices� Why do you
use your de�nition instead�
Arc� Good question� We have de�ned the camera transformation as �rst a
translation and then a matrix multiplication on the world point� This allows us
to easily undo the matrix multiplication on the image point by applying B���
Each camera will then be only a translation away from the �ducial coordinate
system �Fig� ����� which we will see allows easier derivation of our constraints�
B also does not necessarily have to be a linear function� We can remove the
linear constraint and our cameras can model nonlinear distortion as is common
with real�world cameras�
Soc� You talked about this B being a function rather than an rotation matrix�
This seems strange in that you�re convoluting the �D transformation of the
camera with the �D transformation on the image�
Arc� But this can be more natural� Think of your camera as being represented�
like we talked about before� as a center of projection and a plane cutting the
rays� The only thing we can do with the center of projection is to translate
it to di�erent places� The only thing we can do with our plane is to place it
in relation to our center of projection� So our formula is naturally geometric
in that the P� T places our center of projection and our B chooses the plane
with which we cut the rays� The rigid rotation of the camera is chosen by the
placement of the ray cutting plane�

B may be considered to be a transformation on the world points R� or of
the image points P�� In the literature� B is usually split apart using a QR de�
composition� with the orthogonal matrix representing a rotation of the camera
�a transformation on R�� and the residual matrix representing a linear transfor�
mation of the image �a transformation on P�� �calibration matrix�� Since the
coordinates are the same� we ignore such distinctions and just talk about the
B�
Soc� But if you have a single camera moving through space� the calibration
matrix� as you call it� will remain the same while the rotation will change�
Arc� Sure� for many purposes it is advantageous to separate our the calibration
matrix� For simplicity� we just consider the B matrix as a whole�
Soc� Okay� now we see how points project� I have a �ducial coordinate system
somewhere� With regard to that� a point P is seen by camera �B�T� as image
point �ray� p � B�P�T�� p is the ray from the camera center to P � How about
lines�
Arc� Finding an appropriate coordinatization for lines can be a tricky business�
Fortunately� in the case of projection an reconstruction of lines� there is an
extremely natural coordinate system� called the Pl�ucker coordinate system� The
de�nition I state now�
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A world lineL is the set of all the points P � R� such that P � ����Q� 
�Q� for two points Qi� and some scalar �� If we consider � �  and � � �� we
see that the line L contains both Q� and Q�� The Pl�ucker coordinates of this
line are L �

�
Ld
Lm

�
� where�

Ld � Q� �Q� direction of L

Lm � Ld�P moment of L

Note that regardless of the choice of � to de�ne P� the de�nition of Lm is the
same� Also� the coordinates of L are homogeneous� and LT

mLd � ��
Soc� That seems like a strange de�nition�
Arc� It may seem strange at �rst� but when you see the simplicity of our
formulas� you will see why this coordinatization was chosen�
Soc� I�ll go along with you� What exactly are image lines in this system�
Arc� An image line is a line in P�� and you may give it coordinates � �
�l� l� l��T� A point p is incident on line � if and only if pT� � �� As you can
easily see� the line � connecting points p� and p� has coordinates � � p��p��
similarly� if point p lies on both �� and �� then p � ������ So� if you have
two rays p� and p� they de�ne the line � � p��p�� the intersection of the
plane de�ned by the two rays and the image� This line is expressed as the
ray perpendicular to the plane de�ned by the two rays� That�s the cool thing
about the projective coordinates� Both points and lines on the image plane are
expressed as rays�
Soc� How about the projection� It seems like it would be di
cult to go from
Pl�ucker lines to these projective lines�
Arc� That�s the great thing� The projection of a world line onto a camera
is as simple as the projection of a point onto a camera� If you look at the
de�nitions� you see that the coordinates of Lm are created by a cross product
of two points� This is mirrored in the projective plane in that the coordinates
of the line incident on two points is the cross product of the coordinates of the
points� This is why we chose the Pl�ucker coordinates� If we have a line L and
a camera �B�T�� then the image line associated with L is

!� � B�T�Lm � T�Ld�

Soc� That�s easy to see� If we have two points on the world line P� and P��
the coordinates of their image points on a camera �B�T� are just B�P� � T�
and B�P� � T�� considered as members of P�� Then the image line containing
them must be just

!� � �B�P� � T����B�P� �T��

� B�T�P��P� � �T��P� � P����

� B�T�Lm �T�Ld�

I see why you say projection is just as simple for lines as it is for points� If
we ignore the B and T� then our image line � is just � � Lm� while for points
p � P� It�s just that in the case of lines� we ignore the Ld�
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Arc� Good� You should note that when the image point coordinates p are
transformed by a map B to !p with !p � Bp� then the image line coordinates
� are transformed to !� � B�T

�� If we have a world coordinate system� and a
camera in that coordinate system with parameters �B�T�� then we consider the

!p and !� to be the actual point and line coordinates measured in the image� For
most of the derivations� we use the normalized image lines"point coordinates�

p � B��!p

� � �B�T���!�

� BT!�

Whenever we assume that we already have the B� we will use the normalized
image lines"points for the calculations� We multiply the appropriate B or B�T

back later� !p and !� are the real points and lines in the image� p and � are the
derotated ones and normalized� So� I can develop relationships for points are
lines when the cameras are just a translation away from each other and then
substitute for p B��!p and for � BT!� and I get the relation for the real thing�
The step of going from p and � to !p and !� and vice versa� we�ll call calibration�
for lack of a better term�
It is also useful to remember the line intersection property for Pl�ucker coor�

dinates �Fig� ���� which is easy to prove�
Soc� Now that we know all

If we have two lines L� and L��
they intersect if and only if

LT

d��Lm��  LT

d��Lm�� � �

Figure ��� Line intersection property

We are given world line L projected
to two lines !�i� i � f� �g by cameras

�Bi�Ti�� If we set �i � BT

i
!�i� then

the Pl�ucker coordinates of the world line
are�

L �

�
�����

��T
T

��� � ��T
T

���

�

Figure ���� Line reconstruction

about projection� we need to
�nd the camera coordinate sys�
tems� so let�s talk about the con�
straints given projected points�
Arc� Actually� it�s a lot eas�
ier if we do it in the wrong or�
der� and talk about reconstruc�
tion �rst� assuming we already
know the camera parameters�
Soc� If you say so�
Arc� We need to know how
we can reconstruct a world line
and a world point� Given two
arbitrary cameras� it is not in
general possible to reconstruct
a world point from two image

points� unless they satisfy some condition� which is the epipolar constraint that
I have not yet explained� A moment�s thought will con�rm this� since the
two world lines formed by the image points with their respective centers of
projection do not in general intersect� It is possible to form a joint reconstruc�
tion"constraint� but this complicates matters� and yields no bene�t� So� let�s
see how we reconstruct a line� If we have a line L in space which projects to two
image lines !�� and !�� in cameras �B��T��� and �B��T��� then we can calculate
the coordinates for L if j�����j �� � as in �gure ����
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Figure ���� Reconstruction of a world line

This not hard to prove� but to prove it you will have to assume that the
translation between the cameras cannot be perpendicular to the moment vector
of the world line� Translating in this plane leaves the image line the same in
both cameras� so that there is no depth information in the images� and no
reconstruction is possible�
Soc� But we could still calculate the formula in the case that j�����j � ��
couldn�t we� We would just get the zero vector for the answer�
Arc� I hadn�t thought of that� Actually� this is even more general than that�
Consider if instead of being zero� that cross product has a fairly small mag�
nitude� Our L will have a small magnitude� But this is just the case where
our reconstruction is likely to be errorful� The magnitude of L is a con�dence
measurement of our reconstruction�
Soc� And no divisions� But why do you start with lines and not reconstruct
points�
Arc� I will tell you about points� although it is not so useful� in order to
explain the concept of camera collapse� While it is not in general possible to
reconstruct a world point from two arbitrary cameras and image points� it is
possible to reconstruct a world point from three arbitrary cameras using image
lines which are incident on the world point�s image in each of the three cameras�
Euc� What do these arbitrary image lines have to do with anything� They
aren�t measured� so how do you pick them�
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Arc� We just pick three lines which go through image points� Is there a problem
with that�

Euc� But as I understand it� lines are usually formed by �nding corners� which
are just the intersection of points� Why introduce this reconstruction at all if it
doesn�t concern our basic measurements�

Arc� You�re right� Euclid� and that�s why this reconstruction is just for show�
so to speak�

If we project a world point P into three cameras with parameters �Bi�Ti��

and we have measured image lines !�i which go through the image points !pi�
then the coordinates of P are

P �

�
��

T

�

�
T

�

�
T

�

�
�
���
��

T

�T�

�
T

�T�

�
T

�T�

�
�

�
��������

T

�T�  ��������
T

�T�  ��������
T

�T�

j�� �� ��j

If we have a point in one camera and a line in the other� we can consider
T� � T�� B� � B� and p � ������ and obtain

P �
p��

T

� �T� � T��

�
T

�p�
 T�

This is easy to prove�

The second result is essentially the same as the �rst� except with cameras �
and � considered as identical� We call this process 	camera collapse�� Because
we can consider a point as the cross product of two lines� we get an equation
in terms of a point �which can be considered the intersection of two lines� and
another line� We will use this principle throughout our discussion by really only
proving constraints for lines� and then collapsing pairs of cameras in order to
obtain constraints on points�

Let me point out� for Euclid�s bene�t� that in most cases� we will not have
isolated points which we must reconstruct� since most points are located as the
intersection of lines� Even if we have isolated points� if there are at least three�
then we may as well consider the lines joining them rather than the points
themselves� We choose to operate with the lines rather than their intersection�
so we will not use the point reconstruction later in our discussion�

Soc� OK� now are we are now ready for the multi�linear constraints�

Arc� Yes� and let�s start with the quadrilinear constraint� shown in �gure ����
If we have a world point P which projects to cameras  through � with param�
eters �Bi�Ti�� and the image points are intersected by lines !�i� then if we set
!�i � Bi

�T
�i� the equation in �gure ��� holds�

You can easily see it by reconstructing the world lines from the image lines
in the camera pairs �� �� and ��� �� to the red and blue lines in �gure ����
respectively� These are virtual world lines� not necessarily having any reality�
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Figure ���� Quadrilinear Constraint with Virtual Red and Blue Lines

j�� �� ��j�
T

�T�  j�� �� ��j�
T

�T�

 j�� �� ��j�
T

�T� j�� �� ��j�
T

�T� � �

Figure ���� Quadrilinear constraint equation
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Figure ���� Trilinear Constraint with Virtual Red and Blue Lines

but even so they can be expressed as�

L��� �

�
�����

��T
T

��� � ��T
T

���

�

L��� �

�
�����

��T
T

��� � ��T
T

���

�

Both these lines must contain the world point P� Therefore the lines must
intersect� If you write down this condition for the intersection of two lines in
�D ���� you get the constraint�

Soc� How about the trilinear constraint�

Arc� If we have three cameras with parameters �Bi�Ti�� and a world point P

which projects to !pi� then if we have image lines !�� and !�� which intersect their
respective image points� then if we make the usual calibration�

TT

����
T

�p� � TT

����
T

�p� � �T��p��
T������� � �

This is known as the point trilinear constraint� You get it by collapsing
cameras in the previous constraint� as in �gure ���� If you set T� � T�� you
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get�

TT

����
T

� �������  TT

����
T

� �������

 TT

����
T

��������  TT

����
T

� ������� � �

or by simplifying

TT

����
T

� ������� �TT

����
T

� �������

 �T����������
T������� � �

Note that whatever �� and �� we choose� we will end up with the same p� �
������
Soc� I guess now you will collapse cameras and go from the trilinear to the
epipolar constraint�
Arc� Exactly� If we have a world point P projected onto two cameras with
parameters �Bi�Ti� at image points !pi� then if we make the usual calibration
assumption� we have the epipolar constraint�

�T��p��
Tp�  �T��p��

Tp� � �

If we set T� � T� in equation ��� we obtain�

TT

� ���
T

�p� �TT

� ���
T

�p� � �T��p��
T������� � �

or by simplifying

��T����������
Tp� � �T��p

T

� ������� � �

Again� it does not matter which �� and �� we choose� because we will end up
with the same p� � ������
Soc� To me� while the epipolar constraint makes sense� the quadrilinear and
trilinear constraints leave me unsatis�ed� They have this arti�cial selection of
arbitrary image lines� This seems especially strange considering that we usually
construct points by intersecting lines� Is there a way we can use the lines
directly�
Arc� Indeed� there is is a constraint based directly on lines� Strangely enough�
it uses exactly the same equation as the trilinear constraint�
The previous constraints we got by considering lines intersecting in space�

Now consider lines coinciding in space� Here is another constraint if you consider
lines� If we have three cameras with parameters �Bi�Ti�� and a world line L

which projects to !�i� then if we have an image point !p� which is on !�� and we
make the usual calibration�

TT

����
T

�p� � TT

����
T

�p�

� �T��p��
T������� � � ����

which is the same equation� but with di�erent measurements� and is known as
the line trilinear constraint�
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Figure ���� The Line Trilinear Constraint
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Again� it is easy to prove� We may reconstruct our line as�

Ld � �����

Lm � ��T
T

��� � ��T
T

���

If we project this line into the second camera� we obtain

�� � ��T
T

��� � ��T
T

��� �T���������

Therefore� if we consider any point p� on ��� we must have the constraint
pT

��� � �� i�e��

pT

���T
T

��� � pT

���T
T

��� � �p��T��
T������� � �

Note that� while this equation has the same form as the point trilinear con�
straint� it operates on di�erent objects �Fig� ����� Indeed� I will show you later
that the only constraint that is relevant for points is the epipolar constraint�
while the only constraint that matters for lines is the above line trilinear con�
straint� The quadrilinear and point trilinear are redundant with these two
constraints if we consider three or more points�
Soc� Are these the constraints that the community uses� If I recall correctly
from papers and books I looked at� they appear somewhat di�erent�
Arc� These are the constraints indeed� It is a simple exercise to bring them to
the form� One of the nice things about the form they are in is that the positions
of the cameras is explicit for all cameras� which means that they are easier to
integrate into a many camera system�
Soc� So� given many views of the world the only thing you can tell me about
corresponding points and lines is that they satisfy these two line constraints�
the epipolar and the line trilinear�
Arc� Yes� that�s it�
Soc� And with these two constraints you expect to give me �D models� �D
video and photography�
Arc� Well� people have developed them further and they have introduced a
computational framework� for recovering camera location and then reconstruc�
tion� Remember� you are looking for ��N � � �  numbers� expressing the
rigid transformation between any two views for N cameras� up to an overall
scale ambiguity� which account for the �� The � comes from � are for the
rotation and � for the translation� The community has built several interesting
optimization procedures that take as input corresponding points and lines and
provide as output camera placement� They cannot do it perfectly yet� but they
are getting there�
Euc� The problem� Socrates� is how to get rid of the little errors� All these
procedures make errors that if we translate them to image quantities amount to
a few pixels� which is a very small error indeed but unacceptable when it comes

�The framework basically amounts to the estimation of the fundamental 	or essential

matrix and the trilinear tensor� It is described in a large collection of papers and in recent
surveys ��� ����
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Figure ���� M�uller�Lyer illusion�

Figure ���� 	Waves� illusory pattern�

Figure ����� Caf#e wall illusion�
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down to �D models� When you have �D models of something from several views
and you want to put them together� a few inaccuracies here and there create
misregistrations which create problems� Besides� quite often the errors are large�
Another problem is that correspondence is only among individual points�

While this can be su
cient to compute some rigid motions� it is insu
cient to
calculate a full �D model to the degree that we desire�
Soc� All this is �ne� but I doubt that we will make much progress by sticking to
points and lines� But� let�s be very basic� You start from points and lines� Can
you �nd them� As we discussed� to make �D video you need �rst to �nd points�
lines and image movement� I am not going to worry now about corresponding
these features� but about �nding them correctly�
Arc� Of course I can �nd points and lines in images� Anyone can do this�
People have developed a large number of operators that �nd corners and other
points of interest� As for correspondence� if I have two far apart views it is hard�
But if I have a video� I can track a point through the sequence� So the whole
thing is feasible��

Soc� Sure� it�s feasible� but is it good enough� Remember� I need �D photog�
raphy�
Euc� I doubt that you can �nd points and lines correctly�
Arc� Why do you say that�
Euc� Because humans seem to have a problem in �nding points and lines� Look
here� Figure ��� has a few points and lines but you don�t �nd them correctly
because you see the left line as longer than the right�
Arc� Hmm�
Euc� Look at Figure ���� A perfect square chessboard but after introducing
the little squares you see the lines as curved� Or in Fig� ����� the lines are
parallel and horizontal but you see them converging to the left or right� Or look
at Videos  and � �http���www�cfar�umd�edu�users�yiannis�dialogue����
video���mpg and video���mpg�� As I change the background lines� the shape of
the circle changes or the parallel horizontal lines change orientation in a dancing
fashion�
Arc� Fascinating�
Euc� Or look at Figs� ��� and ����� If you jiggle Fig� ��� you perceive two
movements instead of one� And if you move Fig� ���� back and forth along your
optical axis you see the inner circle rotating� You see something which is not
there�
Arc� But these are visual illusions� They happen because the human visual
system is built the way it is� I don�t care about what humans can or cannot do�
I leave that to psychologists and other empirical scientists�
Euc� Sure they are visual illusions� but what if they are due to some math�
ematical reason� What if they are illusions not only for humans but for any
system making images in a similar manner� arti�cial or biological� What then�

�If the images are taken from far apart locations� corresponding is very hard because the
images look quite di�erent� But if we assume video input� that is� a moving camera� then
points of interest may be tracked through the sequence� This is the state of the art and quite
a few trackers are available ��� ����
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Figure ���� A pattern similar to the one by Ouchi�

Figure �����
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Arc� Then I will admit that I have a problem in �nding points and lines�
Soc� Haven�t people studied that� There must be a rich literature in visual
illusions� Why don�t you check it out� Euclid� and tell us tomorrow�
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Act III� Points� Lines and

Movement� The �D

transformation

Euc� I checked how the 	magic eye� illusions work� and they work with a very
simple principle� They trick the eye into corresponding the wrong points� thus
giving a misleading depth map�
Soc� This illusion is hard to see� Why do you think this implies some sort of
general principles about the visual system�
Euc� Well� we�re not sure if it does�

Figure ��� Mismatching of lines causes
di�erent depth maps

but let me explain it to you any�
way� Let�s say we have two cam�
eras which are looking at a planar
set of parallel lines� Further� let�s
say that the cameras are translated
parallel to the plane containing the
lines� We can therefore look at this
situation from the top� so to speak�
as in �gure ��� Let us say that
that black points represent the real
lines� If our cameras match the lines
properly� then we can reconstruct
the depth of the lines with no prob�
lem�
Soc� But is there enough informa�
tion to match these lines properly�
Euc� No� because the images of the lines look exactly the same� We may
mismatch by one line or more� If you look at �gure ��� you will see that if
we mismatch by one in either direction� we obtain the green or purple planes�
Mismatching by more would imply even more di�erent planes� In fact� there
are a countable in�nity of reconstructed planes that account perfectly well for
the image data� depending on which match is chosen�
Arc� But we seldom look at just in�nite sets of parallel lines in space�
Euc� Of course you are right� Archimedes� but this may illuminate the deeper

��
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reasons that feature correspondence is so hard� If features look alike� as do the
parallel lines� then they are hard to correspond�
Soc� But when are there di
culties and when are there not di
culties�
Euc� No one knows this at present� Some algorithms work on some scenes� and
others work on di�erent scenes� but there is no general theory of when a match
would be possible�
Arc� We can avoid this di
culty by using tracking algorithms for moving
cameras� But for stationary cameras� this could be a serious issue�
Euc� But even in systems where tracking is an option� there are still illusions
which can occur� I checked the literature and I came up with a mathematical
principle that predicts many illusions� The bottom line is that there is no way
to avoid uncertainty in �nding points� lines and movement in images�
Soc� We are getting somewhere�
Euc� It is a fascinating literature going back two centuries� You will �nd many
illusions and many theories� for almost any illusion there is a theory� But you
will not �nd a theory for all of them� or at least for some nontrivial subset�
Soc� I wonder why�
Euc� Visual perception is a hard problem� Many people have taken the view
that the brain is a 	bag of tricks�� or a cornucopia of loosely related oppor�
tunistically evolved processes� The current view on illusions conforms to this
paradigm� Most would agree with Robinson ���� who writes that the large num�
ber of geometrical optical illusions are an indicator of the absence of hope of
�nding a general theory which would account for all of them� On the other
hand� physicists are looking for one equation that explains everything�
Soc� There is a di�erence in culture between psychology and physics� But
what is your mathematical principle that predicts many of these geometrical
optical illusions�
Euc� The principle is about the e�ects of uncertainty in visual perception�
Images� like any signal� are noisy� and the visual system has to perform its
interpretation processes in the presence of this noise� Because of the noise� errors
occur in the computation of features� such as lines� their position� orientation
size and movement� There is more to it� The computational processes are such
that the error in the estimation of the quantities is systematic� in statistical
terms we say the estimation is biased� To avoid the bias would require accurate
estimation of the noise parameters� but this� because of the large number of
unknown parameters �the geometry and photometry of the changing scene�� in
general is not possible�
Soc� I see� images have noise� but it is complicated noise�
Euc� We are usually accustomed to think of noisy images as corrupted by large
amounts of uncertainty where one can hardly recognize what is imaged� but even
crisp and clear images have noise which comes from a variety of sources� First�
there is uncertainty in the images perceived on the retina of an eye because of
physical limitations� the lenses cause blurring and there are errors due to quan�
tization and discretization� There is uncertainty in the position since images
taken at di�erent times need to be combined� and errors occur in the geometric
compensation for location� Even if we view a static pattern our eyes perform
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�a� �b� �c�

Figure ���� A schematic description of the behavior of edge movement in scale
space� �a� no movement� �b� drifting apart� �c� getting closer�

movements ��� and gather a series of images �either by moving the eye freely
over the pattern or by �xating at some point on it�� Next� these noisy images
have to be processed to extract edges and their movement� This is done through
some form of di�erentiation process� which also causes noise� For the human
visual system it is thought that orientation�selective cells in the cortex respond
to edges in di�erent directions ����� and thus errors occur due to quantization�
Because of these di�erent sources� there is noise or uncertainty in the image
data used in early visual processes� that is� in the image intensity values and
their di�erences in space time� i�e�� the spatial and temporal derivatives�

Soc� What does bias mean�

Euc� In general� we have available noisy measurements and we use a procedure�
which we call the estimator�to derive from these measurements a quantity� let�s
call it parameter x� Any particular small set of measurements leads to a dif�
ferent value for parameter x� Assume we perform the estimation of x using
di�erent sets of measurements many times� The mean of estimates x �that is�
the average of an in�nite number of values� is called the expected value of x� If
the expected value is equal to the true value � the estimate is called unbiased�
otherwise it is biased�

Soc� I see your point of view� It�s statistical� When you interpret images you
use a signi�cant amount of data� Features are computed from image values
in extended spatial areas acquired at di�erent time instances� The extraction
of features is some form of estimation process� for which the mean �and the
bias� are inherent properties� Thus the bias is justi�ed in the explanation of the
perception of features�

Euc� I am now ready to formulate my hypothesis� which is that the principle
of uncertainty in visual processes is the main cause of many geometrical optical
illusions� The �rst visual interpretation processes consist of estimating local
image features � such as local edges �edgels� from image intensities� intersections
of edges from spatial derivatives� and local image motion from spatiotemporal
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derivatives� These estimation processes are biased� As a result the perceived
positions of edges are shifted� their directions are tilted� and the intersection
of edges and the image movements are estimated wrongly� and this is the main
reason for many illusions� The image features serve as input the next higher
level interpretation processes� Long straight lines or general curves are �tted to
tilted and displaced edgels and distorted curves are computed� as perceived in
many illusory patterns�
Soc� Haven�t people thought of that�
Euc� In the past� a number of authors have discussed uncertainty in imagemea�
surements� In early studies eye movements have been advanced as a causative
factor ���� ��� in illusions� My theory also proposes that eye movements do
play a major role because they are a relevant source of noise� But there are
other sources of noise� and this explains the existence of illusory e�ects for some
patterns even under �xation or tachistoscopic viewing�
More recently in a number of studies ��� �� ��� ��� ��� ��� optical or neural

blur has been discussed as a cause of illusions and models of band�pass �ltering
or smoothing have been proposed to account for a small set of illusions ��� �� ���
���� In intuitive terms these studies invoked the concept that I use� Band�pass
�ltering constitutes a model of edge detection in noisy gray�level images� My
discovery is that smoothing is a special case of the general uncertainty principle
and this principle accounts for a large number of illusions that previously have
been considered unrelated�
Soc� Show us some examples�
Euc� Let�s look at errors in the values of intensity in the image� Consider
viewing a static scene such as the pattern in Figure ���� Let the irradiance
signal coming from the scene parameterized by image position �x� y� be I�x� y��
The image received on the retina can be thought of as a noisy version of the
ideal signal� There are two kinds of noise sources to be considered� First�
there is noise in the value of the intensity� but this noise does not e�ect the
location of edges� Second� there is noise in the spatial location� In other words
there is uncertainty in the position�the ideal signal is at location �x� y� in
the image� the noisy signal with large probability is at �x� y�� but with smaller
probability it could also be at location �x  �x� y  �y� and with even smaller
probability at �x  ��x� y  ��y�� Let the error in position have a Gaussian
probability distribution� The expected value of the image then is obtained
by convolving the ideal signal with a Gaussian kernel g�x� y� �p� with �p the
standard deviation of the positional noise� that is the intensity at an image
point amounts to I�x� y� � g�x� y� �p�� Gaussian smoothing of images is well
understood� and a framework has been developed� called scale space analysis�
that is concerned with the signal under varying smoothing ���� ��� ��� ���
Edge detection mathematically amounts to localizing the extrema of the

�rst�order derivatives ��� or the zero crossings of second�order derivatives �the
Laplacian� ���� of the image intensity function� We are interested in the change
of location of edges under smoothing�
The scale space behavior of straight edges is illustrated in Figure ���� There

are three cases to be considered� Edges between a dark and a bright region do
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�a�

�b� �c�

�d� �e�

Figure ���� �a� Illusory pattern� 	spring�� �b� Small part of the �gure �with
squares in the center of the grid removed� to which �c� edge detection with virtu�
ally no smoothing �using the Laplacian of a Gaussian�� �d� Gaussian smoothing�
and �e� smoothing and edge detection have been applied�
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�a�

�b� �c�

Figure ���� �a� Caf#e wall illusion� �b� Small part of the �gure� �c� Result of
smoothing and edge detection�

�a�

�b� �c�

Figure ���� Modi�ed caf#e wall pattern� The additional black and white squares
change the edges in the �ltered image� which counteracts the illusory e�ect�
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not change location under scale space smoothing �Figure ���a�� The two edges
at the boundaries of a bright line� or bar� in a dark region �or� equivalently� a
dark line in a bright region� drift apart� assuming the smoothing parameter is
large enough that the whole bar a�ects the edges �Figure ���b�� Finally� the
e�ect of smoothing on a line of medium brightness next to a bright and a dark
region is to move the two edges toward each other� These observations su
ce
to explain a number of illusions�
Soc� Let�s see�
Euc� The Figure in ���a �from ���� consists of a black square grid on a white
background with small black squares superimposed� It gives the perception of
the straight grid lines being concave and convex curves� The e�ect can easily be
understood using the above observations� The grid consists of lines �or bars��
and the e�ect of smoothing on the bars is to drift the two edges apart� At
the locations where a square is aligned with the grid� there is only one edge�
and this edge stays in place� The net e�ect of smoothing is that edges of grid
lines are no longer straight as illustrated in �Figure ���e� which shows the result
of edge detection on the smoothed image in comparison to Figure ���c which
shows edge detection on the raw image� The famous 	caf#e wall� illusion shown
in Figure ���a consists of a black and white checkerboard pattern with alternate
rows shifted one half�cycle and with thin mortar lines mid�way in luminance
between the black and white squares separating the rows�
At the locations where a mortar line borders both a dark tile and a bright

tile the two edges move toward each other under smoothing� and for thin lines
it takes a relatively small amount of smoothing for the two edges to merge into
one� Where the mortar line is between two bright regions or where it is between
two dark regions the edges move away from each other� The results of smoothing
and edge detection are illustrated in Figure ���c for a small part of the pattern
shown in Figure ���b� It can be seen that the edge elements which form the
boundaries of the tiles are tilted with the same sign of slope as perceived� �There
are two kinds of overlapping edge elements� the ones form the lower boundary
of a white tile and the upper boundary of a black tile� and the others form the
lower boundary of a black tile and the upper boundary of a white tile��
If bias is indeed the main cause of the illusion then we should be able to

counteract the e�ect by introducing additional elements� This is seen in Figure
���a� the additional white and black squares put in the corners of the tiles remove
the illusory e�ect� Figure ���b shows a small part of the pattern and Figure
���c shows the edges detected� As can be seen from the �gure� the inserted
squares partly compensate for the drifting in opposite directions of edges along
the mortar line separating tiles of the same gray level� As a result slightly
wavy edgels are obtained� but the 	waviness� is too weak to be perceived �low
amplitude� high frequency� and as a result a straight line without tilt is seen�
Soc� But to account fully for the perception of tilted lines you need to do more�
Euc� Sure� The illusion is due to two processing stages� In the �rst stage local
edge elements are computed and bias explains the tilting of these elements� The
second stage consists of the integration of these local elements into longer lines�
My hypothesis is that this integration is computationally an approximation of
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Figure ���� Fraser�s spiral ����

Figure ���� From ����� The �ne line as shown in A appears to be bent in the
vicinity of the broader black line� as indicated in exaggeration in B�
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the longer lines using as input the positions and orientations of the short line
elements� Such an approximation gives rise to a line with a tilt� It also explains
other illusions� such as one of the most forceful of all illusions� the Fraser spiral
pattern �Figure ����� which consists of circles made of black and white elements
which together form something rather like a twisted cord� on a checkerboard
background� The twisted cord gives the perception of being spiral shaped�
rather than like circles� The individual black and white elements which make
up the cord are sections of spirals� thus also the edges at the borders of the
black and white lines are along theses directions and the approximation process
will �t spirals to them�
Soc� I guess now you can apply your statistics for the case of intersecting lines�
Euc� The perceptual e�ect at intersecting lines is illustrated in Figure ���� It
can be shown with the model I already introduced that the intersection point of
two lines which intersect at an acute angle is displaced� The e�ect is obtained by
smoothing the image and then detecting edges using non�maximum suppression
�see Figure ����� To give a more detailed analysis of the behavior of intersecting
lines we need to employ an additional� more sophisticated model�
Consider the input to be edge elements� A straight line is represented by a

large number of edge elements �Figure ����� These are noisy� there is noise in
the position� which however has no in�uence in the analysis and there is noise in
the direction� To obtain the intersection of straight lines� consider through every
edge element a straight line� If there is no noise all the straight lines intersect
at a point� with noise� the intersection point is found as the point closest to all
lines� where closest is de�ned as the minimum of the least squares solution to
the line constraints as illustrated in Figure ����
It is well known that the linear least squares estimation is biased if there is

noise in the measurements which are multiplied by the unknowns�in this case
the directions of edgels� i�e�� the image gradients ����� The expected value of the
estimated intersection point amounts to

x�  nM ���
�$x� � x����s ����

where x� is the actual intersection point and $x� is the mean of the edgel centers�

M � � Is
�tIs

� is the � � � matrix of the actual gradient directions� �s is the
variance of the noise in the Is� and n is the number of measurements which has
no in�uence as M ��� is proportional to �

n
� The second term in expression ����

is the bias� This expression allows for an interpretation of the bias and it allows
to predict parametric in�uence on the strength of illusions� Some important
characteristic features of the intersection of two straight lines in an acute angle
are� as shown before in Figure ��� the estimated intersection is between the
lines� the size of the bias decreases as the angle increases and the component
of the bias in the direction perpendicular to a line decreases as the number of
edgels along the line increases�
The best known illusions due to intersecting lines are the Poggendor� and the

Z�ollner illusion� In the Poggendor� illusion in Figure ��� the upper�left portion
of the interrupted� tilted straight line is apparently not the continuation of the
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�a� �b� �c�

Figure ���� �a� A line intersecting a bar at an angle of �fteen degrees� �b� The
image has been smoothed and the maxima of the gray level function have been
detected and marked with stars� �c� Smoothing and maxima detection for a line
intersecting a bar at thirty degrees�

Figure ���� Poggendor� illusion�
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Figure ���� �a� The data are edgels parameterized by their center �x�i � y�i�
and their direction� which is described by the image gradient �a unit vector
perpendicular to the edgel� �Ixi � Iyi�� There is additive independently identically
distributed zero�mean noise in the components of the gradient� i�e�� Ixi � I�xi  
�Ixi � Iyi � I�yi  �Iyi � where primed letters denote measurements� unprimed
letters actual values and ��s errors� �b�Every edge element �Ixi � Iyi � x�i� y�i�
de�nes a line� Ixix  Iyiy � Ixix�i  Iyiy�i � We are interested in the point
x � �x� y� closest to all the lines� where the distance is evaluated as �x�x�i � y�
y�i� � �Ixi � Iyi�� i�e�� geometrically� the projection of the vector from the center of
the edgel to the intersection point on the normal to the line �distance s in the
�gure�� The solution to the intersection point x � �x� y� is found using standard
least square �LS� estimation� It amounts to x � �ItsIs�

��ItsC where Is is the n�
by�� matrix which incorporates the data in the Ixi and Iyi � superscript

t denotes
the transpose of matrix� and C is the n�dimensional vector with components
Ixix�i  Iyiy�i �

lower portion on the right� but is too high� The phenomenon is explained by
the bias in the estimation of intersection points� The intersection point of the
left vertical with the upper tilted line is moved up and to the left� and the
intersection point of the right vertical with the lower tilted line is moved down
and to the right� As a result the two line segments appear to be shifted in
opposite directions and not to lie on the same line anymore� The model also
predicts the �ndings of parametric studies that the illusory e�ect decreases with
an increase in the acute angle and reaches zero at �� degrees�

Figure ��a shows a version of the Z�ollner illusion� The vertical bands are
all parallel� but they look convergent or divergent� The biases in the intersection
points of the edges of the bands with the edges of the short line segments cause
the edge elements along the long edges between intersection points to be tilted�
as illustrated in Figure ��b and c� In a second computational step� long lines
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�a� �b� �c�

Figure ��� �a� Z�ollner pattern� �b� and �c� Estimation of edges in Z�ollner
pattern� The line elements are found by connecting two consecutive intersection
points� resulting from the intersection of edges of two consecutive bars with the
edge of the vertical bar �one in an obtuse and one in an acute angle��

are computed as an approximation to the small edge elements� and this gives rise
to tilted lines or bars in the same direction as perceived by the visual system�

In the Z�ollner illusion� too� the illusory e�ect decreases with and increase in
the acute angle between the main line and the obliques� Other studies found
that this illusion is stronger when rotated by �� degrees� Neurophysiological
studies have found more response from the cortex to lines in horizontal and
vertical than oblique orientations �����translated to our model� more response
means more edgels� In the rotated Z�ollner pattern there are fewer edgels along
the main lines and as a result more bias perpendicular to these lines which
increases the perceived tilt�

An example of an illusion with a curved object is the Luckiesh pattern whose
estimation is illustrated in Figure ����

Soc� I guess similar things happen for the case of motion� Is that so�

Euc� Yes� The basic image representation of movement as used currently by
the �eld is the optical �ow which corresponds to velocity measurements of im�
age patterns� Optical �ow is derived in a two�stage process� First� from local
spatiotemporal measurements at a point the velocity component perpendicular
to the linear feature there is computed� This one�dimensional component is
referred to as normal �ow� Second� normal �ow measurements from features
in di�erent directions within a small neighborhood are combined to estimate
the optical �ow� but this estimate is biased� There are di�erent models in the
literature� some consider the computations in spatiotemporal frequency space
and some in image space� but their statistics are equivalent ���� An illustra�
tion of the latter is given in Figure ���� We assume there is additive� identical
distributed noise in the spatial and temporal derivatives of the image intensity
function� that is the direction of the edgels and the length of the normal �ow
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�a� �b�

�c� �d�

Figure ���� Estimation of Luckiesh pattern� �a� The pattern� a circle super�
imposed on a background of di�erently arranged parallel lines� �b� Each line
has two edges� and the intersection between any background edge and circle
edge was computed� This provided for every intersection of the circle with a
straight line four intersection points� two corresponding to the inner edges of
the circle and two to the outer ones� Arcs on the circle between two consecutive
background lines were approximated by straight lines� Consecutive intersection
points�one originating from an obtuse and one from an acute angle�were con�
nected with straight line segments� �c� Then Bezier splines were �tted to the
outer line segments �only in interesting places�� This resulted in a curve like
the one we perceive� with the circle being bulbed out on the upper and lower
left and bulbed in on the upper and lower right� �d� Magni�ed upper left part
of pattern with arcs superimposed�
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Figure ���� �a� In a �rst stage� at an image point �xi� yi� the component of
the �ow u � �u� v� perpendicular to the local edge �un� is computed� Denoting
the spatial derivatives of the image intensity function I�x� y� t� at �xi� yi� by
�Ixi � Iyi� and the temporal derivative by Iti � the �ow u at �xi� yi� is constrained
by the equation Ixiu  Iyiv � �Iti � �b� In a second stage� the optical �ow is
found by combining measurements in a local neighborhood� Assuming the �ow
to be constant� u is found as the vector whose endpoint is closest �evaluated by
the normal distance� to the constraint lines� Algebraically� we obtain a system
of equations Isu � It� where Is denotes the n by � matrix of spatial gradients�
It is the n�dimensional vector of temporal derivatives� Its least squares solution
amounts to u � ��ItsIs�

��ItsIt�

vectors� The expected value of the optical �ow using a least squares estimation
amounts to

u� � n��sM
���

u�� �����

where u� denotes the actual �ow� This equation� similar to the one for intersect�
ing lines� shows that the bias depends on the gradient distribution �that is the
texture� in the region� The estimated �ow always is underestimated in length�
and its direction is biased towards the orientation of the majority of gradients�
Figure ��� shows a variant of a pattern created by Ouchi ����� It consists

of two rectangular checkerboard patterns oriented in orthogonal directions�a
background orientation surrounding an inner ring� Small retinal motions� or
slight movements of the paper� cause a segmentation of the inset pattern� and
motion of the inset relative to the surround �����
The tiles used to make up the pattern are longer than they are wide leading

to a gradient distribution in a small region with many more normal �ow mea�
surements in one direction than the other� Since the tiles in the two regions of
the �gure have di�erent orientations� the estimated regional optical �ow vectors
are di�erent� The di�erence between the bias in the inset and the bias in the
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Figure ���� The regional motion error vector �eld� The vectors shown are
the di�erences between the true motion and the calculated motion� To derive
the sliding motion� compute the di�erence between the error in the inset and
the error in the surround� and project the resulting vector on the dominant
gradient direction in the inset� The line from the center is the direction of the
true motion�

surrounding is interpreted as motion of the ring� An illustration is given in
Figure ��� for the case of motion along the �rst meridian �to the right and up��
In addition to computing �ow� the visual system also performs segmentation�
which is why a clear relative motion of the inset is seen�
Another impressive illusory pattern is shown in Figure ���� �from ������ If

�xating on the center and moving the page back and forth along the line of
sight the inner circle appears to rotate�clockwise with a motion of the paper
away from the eyes� For a backward motion of the paper the motion vectors
are along lines through the image center� pointing away from the center� The
normal �ow vectors are perpendicular to the edges of the parallelograms� Thus
the estimated �ow vectors are biased in clockwise direction in the outer ring
and in counterclockwise direction in the inner ring� The di�erence between the
inner and outer vectors �along a line through the center� is tangential to the
circles� and this explains the perceived rotational movement� In a similar way
one can explain the perception of a spiral movement when rotating the pattern
around an axis through the center and perpendicular to the paper�
See now how you can in�uence the bias by changing the matrix M � of the

edges� e�g�� the texture� For the pattern in Fig� ���� the illusion disappears�
Soc� I don�t know if you can convince the psychologists that this is what is
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Figure ����

happening with humans� but you convinced me that �nding points� lines and
movement is a pretty di
cult task�

Arc� Regardingmovement� why �nd �rst normal �ow and then do least squares�
How about if you directly track corners�

Soc� Archimedes� there is no way out of this bias� How will you �nd the
corner� Whatever you do� you will end up intersecting two lines� There is your
bias� You will be tracking but the point you track will be biased� it will be the
wrong one�

I must admit that our discussion up to now has been very good� We have
learned something� Points� lines and movement will have an unavoidable error�

Arc� But you could use more sophisticated statistical techniques and perhaps
avoid the bias�

Euc� Noise a�ects any vision system� biological or arti�cial� It may be that
the models used are not the ones biology employs� but other models su�er
from biases too� Theoretically� to compensate for the bias would require good
estimates of the statistics of the noise� In most situations� however� these cannot
be obtained accurately enough� It requires a lot of data from large spatial areas
and extended time intervals to obtain good estimates of the noise parameters�
However� the noise parameters change spatially with the scene and they don�t
stay �xed for extended periods of time� The lighting conditions� the physical
properties of the objects being viewed� the orientation of the viewer in �D space�
and the sequence of eye movements all have in�uences on the noise�

Soc� Beyond this bias problem with localizing points� there seems to me to be
another problem with point matching� dependent on the texture�

Soc� Yes� we will always have an error� Now we need to �nd out how this
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input error a�ects the estimation of the �D transformation� Then we will know
where we stand regarding the problem of making �D models� Please look at
this question� I will always have an error in locating points� lines and image
movement� How does that in�uence the �D transformation�
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Act IV� The �D

Transformation� Confusions

and Distortions

Euc� I have very interesting news� I checked the literature and luckily this time
it was pretty small� It turns out that the bias which is unavoidable in the �D
transformation translates to bias in the �D transformation� So when you place
the cameras you have a problem� the placement has errors�

Arc� I wonder how you are going to show this� There are so many techniques
for �nding the �D transformation� Are you going to analyze them all�

Euc� There are many techniques� but� as you explained� there are only a couple
of constraints�

Arc� So�

Euc� And I will consider only one constraint� the epipolar� You see� I am not
interested in speci�c algorithms� I want to �gure out some principle in this
problem� independently of the algorithm used�

Arc� Fine�

Euc� Take the epipolar constraint� Consider two cameras at two positions� with
their coordinate systems related by a rigid transformation� and a scene point�
The scene point� together with the camera centers de�ne the so called epipolar
plane which intersects the image planes in the epipolar lines� The epipolar
constraint then states that a point in one image has to be matched with a point
lying on the corresponding epipolar line in the other image� Deviation from the
epipolar constraint is the epipolar error� Minimization of epipolar errors is the
basis of most �D motion estimation algorithms �Fig� ����

Arc� That�s true� but you can de�ne error in di�erent ways and some of them
are better than others�

Euc� True� But as you will see from my analysis� it doesn�t really matter which
form of error you adopt� It doesn�t make much of a di�erence�

Arc� OK� Let�s see�

Euc� One more thing� I will do the analysis in the di�erential case� that is� I
will assume that the two cameras� the two views are very close to each other�
like successive video frames taken by a moving camera�

��
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Arc� You cannot do that� You know that if you have the cameras very close
to each other that�s not good for making models� If you make an error in the
�D transformation� then when you triangulate to �nd the �D model you get a
bigger error than when the cameras are far apart �Fig� �����
Euc� That is true� but right now I

Figure ��� jp��p�j cos � is the epipolar
error� With no noise� this should be zero�

am only interested in the �D trans�
formation� not in the �D shape model�
Whatever I �nd for the case of the
cameras close to each other� it will
translate to the case where the cam�
eras are far apart� Besides� in this
case many things become linear which
makes it easy to analyze� So� in�
stead of a rotation matrix and a
translation vector with correspon�
dences between points or lines es�
tablished� I will consider �nding the
camera�s instantaneous �D motion
from the �ow �eld� the image mo�
tion �eld� It�s basically the same
thing� It is� rather� slightly easier��

Arc� Fine�
Euc� Considering a camera with
the usual geometric model �Fig� ���a moving in a static environment with in�
stantaneous translation t � �U� V�W � and instantaneous rotation � � �	� 
� ��
�measured in the coordinate system OXY Z�� a scene point R moves with ve�
locity �relative to the camera�

%R � �t� � �R ����

and is imaged at r with

r � f
R

R � !z
�����

where !z is the unit vector in the direction of the Z axis� and f the focal length�
The image motion �eld then consists of the sum of two vector �elds� one due

to the translational part of the �D motion and the other due to the rotation�
Equation ����� and ���� give ����

%r � �


�R � !z�
�!z� �t� r��  



f
!z � �r� �� � r�� �



Z
ut�t�  ur��� �����

where Z is used to denote the scene depth �R � !z�� and ut�ur the direction of
the translational �ow and the rotational �ow respectively� Due to the scaling

�The point Euclid is making is that it doesn�t matter for his purpose if he does the analysis
in the di�erential or the discrete case� as far as the �D transformation is concerned� The
di�erential case is easier to analyze� Attempts to analyze the stability in the discrete case
have not given any crisp results�
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Figure ���� Successively closer cameras cause greater errors in depth estimation
for the same image error�
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Figure ���� Image formation on the plane �a� and on the sphere �b�� The system
moves with a rigid motion with translational velocity t and rotational velocity
�� Scene points R project onto image points r and the �D velocity %R of a scene
point is observed in the image as image velocity %r�
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ambiguity� only the direction of translation �focus of expansion�FOE� or focus
of contraction�FOC� depending on whether the observer approaches or moves
away from the scene�� and the three rotational parameters can be estimated
from monocular image sequences ����
Equation ����� demonstrates model construction� If the image motion vector

%r is known at point r� then knowledge of t �up to scale� and � provides Z �up to
scale�� i�e�� the depth at point r in the camera�s coordinate system� Knowledge
of Z �or� equivalently� R� for all image points r provides a model for the scene
in view� for the current viewpoint of the camera� Knowledge of t� � and R

provides then� from eq� ����� knowledge of %R �up to scale�� that is� the �D
motion vector� A sequence of �D motion vector �elds is a model of action� as it
shows how di�erent parts of space move�
Arc� Fine�
Euc� How does the epipolar constraint become now� If we subtract from the
�ow the rotational �ow� we must get a vector parallel to the translational �ow�
This means �t�r�� %r ��r� � �� We need to �nd � and the direction of t� For
example� �nd !t and !� that minimize�

Mep �

Z Z
image

�	
!t� r



� � %r  !� � r�

��
dr �����

Arc� OK� what is your point�
Euc� My point is that I can now study the topographic structure of this func�
tion� I can �nd the shape of the function at places where the minima are� That
way I can see how easily I can �nd the minimum� how robust my problem is to
noisy input�
Arc� Well� that would be magni�cent� You will just understand the structure
of the problem� But for what data are you going to do the analysis� This
function changes depending on the surface in view�
Euc� It would be nice to do it for any surface in view� And if that is not
possible� for a very large subset of all possible surfaces�
Arc� That would be nice� Let�s start�
Euc� Before that let me show you Video � �video���avi�� It illustrates a good
point� Imagine that you are at the center of a sphere� and you look straight
at the wall painted with the monkey� Imagine that you are either translating
parallel to the wall or rotating around your vertical axis� In each case you will
acquire a video� Look at them� they are indistinguishable�
Arc� That�s true� But this is because I have a small �eld of view� I confuse
the rotation with the translation�
Euc� Yes� but this is the �eld of view for most commercially available cameras�
Now� if you can simultaneously look at �� degrees apart and get a video of the
other wall �ceiling� as you are moving it becomes easy to di�erentiate between
the video acquired during translation with the one obtained during rotation�
No ambiguity here� but now you have a big �eld of view�
Arc� So� you are saying that there is some confusion between rotation and
translation� We sort of know this� But is that a big deal�
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Euc� I think it is a very big deal because there is nothing you can do about it�
There are a few people who studied this problem �� � �� ��� Something very
interesting came out of these investigations� You are interested in the direction
of translation t� call it �x�� y��� and the rotation � � �	� 
� ��� Let�s say that

what you estimate is � !x�� !y�� and !� � �!	� !
� !�� with the errors x�� � x� � !x��
	� � 	 � !	� etc� Then� for a restricted �eld of view� if you optimize the
epipolar constraint� you will get a solution which will have errors satisfying
three conditions in general��

� The cyclotorsion condition� �� � ��

�� The perpendicularity condition� x��
y��

� � ��
��
�

�� The line condition� x�
y�
� x��

y��
�

Arc� That�s pretty strong� You can only hope to �nd �� What surface in view
was assumed�
Euc� Well� to be precise these two conditions are likely to occur� You see� the
analysis was done not for a speci�c surface in view� but for many surfaces� It was
assumed that the depth values of the surface in view were uniformly distributed�
So the two conditions are conditions that are likely to occur� In addition� these
conditions �with the exception of the �rst� do not tell you anything about the
size of the error� They only tell you relationships between di�erent parts of the
error�
Arc� Can you give some intuition behind this result�
Euc� Certainly� but I would have

Figure ���� Minimizing E �translation
only��

to use a spherical eye� i�e�� projec�
tion on a sphere� Again you con�
sider all the rays passing through a
point� the camera center� but now
you cut them with a sphere� and
the image is formed on the sphere
�Fig� �����
Arc� No problem�
Euc� If the imaging surface is a
sphere of unit radius centered at
the origin of the �ducial coordinate
system� we consider a parameteri�
zation of the imaging surface by the
directional coordinates r where R is the scene point projected on the imaging
surface at r and thus r � R

jRj
�

Arc� So far� so good�
Euc� Recall the image brightness constraint equation �Fig� ����� It tells you
how the image derivatives at a point are related to the image motion at that
point� If you write it for these new coordinates� you get �I is the intensity��

It  rrI �
dr

dt
� � �����

�The conditions are in the set of these three� but are not identical for the di�erent con�
straints�
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which we relate to the motion parameters as follows�

�It � rrI �
dr

dt
� rrI �

�


jRj
t ��  r�

�
� �����

Arc� I see that this equation is even more basic than the equations giving �ow
or correspondence� like ���� or the equation of the epipolar constraint because
it directly involves the image��

Euc� Yes� exactly� Now you can

Figure ���� The valley of the optimizing
function painted on the sphere�

write the motion constraint on the
sphere ����� as

�It � rrI �
t

jRj
 �r�rrI� � �

�����

Since rrI is perpendicular to �r�
rrI�� for a small �eld of view �r
varies very little� and little varia�
tion in depth� a translational error
t� can be compensated by a rota�
tional �� without violating the con�
straint in ����� as long as the errors
have the following relationship�



jRj
r�t� � �r��r����� �����

That is� the projections of the trans�
lational and rotational errors on the

tangent plane to the sphere at r need to be perpendicular� This is the perpen�
dicularity constraint� If we now increase the �eld of view� the constraint on the
errors in ����� cannot be satis�ed for all r� thus the confusion disappears�
There is another ambiguity� Looking at the �rst term in ������ that is

rrI � t�jRj� we see that the component of t parallel to r does not factor into
the equation �since rrI �r � �� and therefore cannot be recovered from the pro�
jection onto the gradients for a small �eld of view� This is the line constraint
on the plane� because the projections of the actual t �FOE� and the estimated
&t � t �r� � � R onto the image plane lie on a line through the image center�
Again an increase in the �eld of view will eliminate this ambiguity� since then
measurements at other image locations enable us to estimate the component of
t parallel to r�
Arc� I get it� I guess now there is enough computational power to really plot
the minimizing function and see what this actually means�
Euc� Yes� and it has been done� The practical signi�cance of this result is that�
in general� it is not possible to �nd exactly the �D motion or �D transformation
using two views of a scene� No matter what procedure is followed� the best one

�This is the basic constraint on which the direct algorithms are based�
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can hope for is to �nd a set of solutions� The above mentioned results� translated
into plain language� mean that when one sets up an optimization function to �nd
the �D motion� no matter what technique one is using� the function is such that
it has valleys at the locations of its minima� It�s very hard to show valleys of the
�ve�dimensional function �three rotational and two translational parameters��
so I resort to showing the valleys for the translation only �two parameters��
Let�s say that E is the function one chooses to optimize in order to �nd the �D
motion �or rigid transformation�� that is� the desired translation and rotation
constituting the global minimumof E� The following procedure shows the valleys
for the translation� For each possible translation� estimate the corresponding
rotation from the data� One can then plot E as a function of the translation�
Fig� ��� shows such a valley for two frames of a video sequence� Video �
�http�""www�cfar�umd�edu"users"yiannis"dialogue��"video���mpg� shows the
valley for the translation� with the function E painted on the sphere� �During the
illustration� points corresponding to negative depth are removed� thus reducing
the ambiguity�� Fig� ��� shows just one view of the sphere� Every point of
the sphere represents the direction of a possible translation� Red indicates the
lowest points of the optimizing function� One can clearly see a valley� It is worth
noting that the actual solution lies inside the valley but it is not necessarily the
lowest point in the valley� if such a point exists� The valley may turn out to
be elongated and thin� or more of a basin� depending on the uncertainty in the
data� One can attempt a reconstruction of the scene from two frames in a video
only if the corresponding valley has a small extent� In Video � �video���mpg�
we show the valleys for all video frames for the translation for the underlying
camera motion that captured the video in Video � �video���mpg�� Fig� ���a
shows just the valley for two frames of the video� one frame of which is shown
in Fig� ���b� Deep red signi�es the lowest part of the valley� Clearly there are
parts of the video where the valley is highly restricted� as there are parts where
the valley has a very large extent� Failure to accurately localize the solution for
the �D motion will create problems in shape reconstruction� See� for example�
the object in Video � �video���mpg�� Video � �video���mpg� shows the depth
recovery as one moves along the corresponding translation valley obtained from
two consecutive frames of the video �as the slider moves from left to right� the
recovered translation moves along all points in the valley�� Clearly� even in the
case of this smooth object� there is quite a lot of variability in the recovered
shape for di�erent translations inside this small valley�

Arc� Is there something you can say about the shape of the valley�

Euc� Frommany experiments it comes out that the valley is somewhat elongated�
the line condition� Its fatness comes from the other condition� But if the con�
dition x���y�� � �
��	� � x��y� and �� � � holds exactly you can �nd some
interesting �D models� even if you have errors in the �D transformation ����

Arc� This all makes perfect sense to me� When using the state of the art�
we used to get a lot of ambiguity in the �D transformation and subsequently
in the �D model� we attributed it to being close to generate con�gurations��

�For quite some time the community fell into the trap of attributing errors in recovering
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But that�s not necessarily the case� You can get a lot of ambiguity by the
rotation"translation confusion because of the �eld of view� it�s quite clear now�
If I make an error in the translation� then I will have to compensate for it so
that I optimize the epipolar constraint by making an error in the rotation� and
vice versa� But something does not �t well here� The state of the art algorithms
compute an answer which clearly minimizes the reprojection error� It appears
to be the best possible solution� Not to mention that this is reprojection� But
reprojection to what� To the biased points� of course�
Euc� That�s the point� Archimedes�

�a� The translation valley for two frames
of the sequence� The image size is de�
noted by four corners

�b� One frame from a sequence�

Figure ����

When you are inside the valley� all
solutions are basically indistinguish�
able� they are all consistent with
the data� As a matter of fact� if
the valley seems to have a lowest
point� that point is not necessar�
ily the solution� So� the same is
true for the reprojection error �See
Footnote ��� The solutions inside
the valley will give you about the
same reprojection error� Minor dif�
ferences do not point to the solu�
tion�
Arc� That�s clear� But how about
a large �eld of view�
Euc� If you choose a ��� degree
�eld of view� that is� a spherical
eye� ambiguitybasically disappears�
If you study the topographic struc�
ture of the optimizing function �epipo�
lar error� you will not �nd valleys
where the minima lie� the minima
are very well de�ned ����
Arc� No wonder �ying systems have
panoramic vision� Not only can they
	see� in all directions� they can also
�nd their motion using the images�
So� let�s use large �eld of view cam�
eras and the little errors in the points
and lines won�t matter�
Euc� To fully eliminate the ambi�
guity you need a full �eld of view�
Since it turns out that spherical eyes such as the ones of insects� or� in general�
panoramic vision provides much better capability for �D motion estimation� and
since the problem of building accurate space and action descriptions depends
on accurate �D motion computation� it makes sense to reconsider what the best
eye for model building should be� There are a few ways to create panoramic

camera geometry to the fact that the scene in view was close to degenerate con�gurations
admitting in�nite solutions ���� ��� This is the case sometimes but for the most part the
ambiguity comes from the rotation�translation confusion�
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vision cameras� and the recent literature is rich in alternative approaches� but
there is a way to take advantage of both the panoramic vision of �ying systems
and the high resolution vision of primates� An eye like the one in Fig� ����
assembled from a few video cameras arranged on the surface of a sphere and
capable of simultaneous recording�� can easily estimate �D motion since� while
it is moving� it is sampling a spherical motion �eld�
An eye like the one in Fig� ��� not only has panoramic properties� eliminating

the rotation"translation confusion� but it has the unexpected bene�t of making
it easy to estimate image motion with high accuracy� Any two cameras with
overlapping �elds of view also provide high�resolution stereo vision� and this
collection of stereo systems makes it possible to locate a large number of depth
discontinuities� It is well known that� given scene discontinuities� image motion
can be estimated very accurately� As a consequence� this eye is very well suited
to developing accurate models of the world�
Arc� Not bad� Now� using our existing theory and the new eye we can solve
for the �D transformation quite easily�
Euc� Yes� Look at this experiment using the Argus eye�� Fig� ��� shows
a schematic version of the Argus eye� consisting of six cameras arranged to
point outwards� Fig� ��� shows an actual view of the system� and Video 
�video���mpg� shows graphically what such a system sees �it samples parts of the
visual sphere�� When the Argus eye is moving with an unrestricted �D motion
collecting synchronized video from all six cameras� it becomes easy to compute
its �D motion using data from all six videos� if the cameras are calibrated in
an extrinsic sense� If we analyze each video separately we �nd� at each instant�
a valley for the translation of each of the cameras� as shown in Fig� ���� As
the rotation of each camera is the same as the rotation of the system� there
are easy ways to compute the rotation� For example� consider one camera� For
each translation inside the valley� there is a corresponding rotation� For all
translations the corresponding rotational values lie on a surface in �D space�
Considering all cameras� these surfaces intersect at one point in space which
provides the rotation� Video � �video���mpg� shows the growth of these surfaces
and their intersection�� If we then derotate each one of the videos the valleys
become much thinner �Fig� ���� and bringing them all to the same coordinate
system provides a unique translation for the whole system� as shown in Fig�
����
Arc� Very exciting indeed� I can make eyes like that� the size of a golf ball�
Like in Figure ���� using DSP�s and CCD�s�
Soc� I am very impressed and we already found out lots of things� Using
conventional cameras� we cannot recover �D models perfectly� The uncertainty
in locating points and lines will create an uncertainty in camera placement�
Look at Video � here �video��avi�� It shows how the �D model is a�ected by
small errors in the features used to intersect rays and �nd the model� The slider
on the right shows the average error in the location of image points� with the
maximum being �ve pixels�
You can� however� place the cameras very well when you use a new kind of

eye� But even if you place the cameras perfectly� how are you going to make a �D

�Like a compound eye with video cameras replacing ommatidia
�In Greek mythology Argus was the guardian of Hera� the goddess of Olympus� Argus

alone defeated an army of Cyclopes� giants with one eye� Argus had lots of eyes all over his
body�
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Figure ���� Initial valleys from each camera �translation��

Figure ��� Translation valleys after derotation�
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Figure ���� Valley for the whole system �translation��

�a� �b�

Figure ����
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model� You need correspondence� I don�t hear anything about this problem�
You say� of course� that multiple stereo systems facilitate the �nding of the
correspondence� but I don�t hear any radically new idea� Please think about it�
There is also something else that both�

Figure ���� A compound�like eye
composed of conventional video cam�
eras�

Figure ���� Argus eye schematic

Figure ���� Argus eye implementation

ers me� When we refer to the �D model�
we leave out the texture� The texture
just appears on top of the model as
a texture mapping� It is not directly
incorporated into the reconstruction� There
must be some better way to consider
the motion� texture� and shape alto�
gether rather than splitting them up as
we do� When I look at a surface in the
world� I see it together with its texture�
As if it�s one thing� Put the texture
back in your thinking�



Act V� Correspondence

Arc� Euc� Socrates� we really don�t know what to do� Whatever we try it
seems that we are not overcoming the errors we saw in the illusions� We�re also
seeing some larger errors caused by complete mismatching of points we see in
the 	magic eye� illusion� We�re never sure which are the right matches and
which are the wrong ones� We need some help�

Soc� You need a lot of help indeed� But tell me� what have you tried�

Euc� If you match a few points in the two images� you can already solve
for the �D transformation� Now� if you keep adding correspondences to the
set� when you use all the correspondences� you should be �nding the same �D
transformation� If you don�t� you can go back and try other combinations� you
can try lots of combinations using powerful mathematical tools� and � � �

Soc� But you are still sticking to points and lines�

Euc� Well� that is all that our projective geometry can operate on�

Soc� It seems to be that you have overdeveloped the geometry but you under�
developed the statistics� the signal processing�

Arc� Hmm� what does that mean�

Soc� I looked at a few books that have appeared devoted to this problem�
Finding the correspondences through some signal processing is consistently the
smallest part of all the books� Almost not existing� Just a few paragraphs� My
point is very simple� Look at the world� You cannot avoid noticing that you
can observe things that happen on the �D surfaces regarding the texture and
the color� As if you are doing signal processing in �D�

Arc� Signal processing in �D�

Soc� Yes� in �D� What you are doing now is signal processing on the images�
which are �D� they are planes� They contain the projection of the world onto a
plane�

Arc� But I am doing all these to get to �D anyway�

Soc� Yes� and you are partly successful� This means you already found out
something about the shape� right�

Arc� Yes� of course�

Soc� How about if you use what you found to manage to do signal processing
in �D� Then you will have a chance� because what you have in the images is
quite distorted and your signal processing isn�t good enough�

Arc� You mean something of a feedback step�

��
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Figure ��� Missed correspondence causes an incorrect depth map
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Soc� Exactly� Use what you found already to get the �D model better� more
accurate�
Arc� People have tried this sort of thing�
Soc� What did they try exactly�
Arc� It�s called bundle adjustment��After a solution is obtained for the �D
transformation� a multidimensional optimization starts that keeps slightly chang�
ing the �D transformation� the �D model and the correspondences as well� and
usually a better solution is obtained�
Soc� But Archimedes� what bundle adjustment does then is to move you a
little bit inside the valley of all solutions� I guess if I start bundle adjustment
from a di�erent initial condition� I will get a di�erent answer� right�
Arc� Sure� slightly di�erent� usually�
Soc� You need to think beyond points and lines�
Arc� But what else is there to work with�
Soc� Listen� What is a point� It is that which has no part�
Arc� Yes� a geometric de�nition��

Soc� So� when you study the Milky Way galaxy� you can represent it as a point
in your particular astrophysics problem�
Arc� Sure�
Soc� And when you study in�uences between planetary systems� you may
represent Earth as a point� and if you study the movement of gases in chambers�
you may represent a molecule as a point�
Arc� What is your point�
Soc� When you study images� what is a point� That�s my point�
Euc� What Socrates means is� what is the quantum in images� what is a fun�
damental thing with no parts� so to speak�
Soc� Exactly� What you have been doing up to now is considering image points
as mathematical points� as intersections of lines� I admit that this is not bad�
but you realize that you are far from the real thing�
Arc� I admit that Socrates� riddles are somewhat irritating�
Soc� I bet� I guess that�s what happens when we don�t know where we are
going� But things are really simple� Take the case of di�erential motion� so you

�Consider two images of some scene containing pointsmi andm
�

i in correspondence� If G
is the rigid transformation between the two views� one can �nally obtain the corresponding
�D points Mi as a function of mi�m

�

i and G� i�e�� Mi � f	G�mi�m
�

i
� So� the projection
of Mi on the �rst camera is P 	Mi
 � mi and on the second P � � 	Mi
 � m�

i� Bundle
adjustment amounts to adjusting the bundle of rays between each camera center and the set
of �D points so that the distance between the reprojected point P 	Mi
 � P 	f	G�mi�m

�
i



and the detected 	measured
 point mi is minimized� that is�

min
X
i

kP 	f	G�mi�m
�

i

�mik
� � kP �	f �	G�mi�m

�

i

�m�

ik
�

It is quite a complicated optimization usually starting after a solution is produced� It keeps�
in e�ect� changing all relevant parameters until a solution is achieved that provides a 	local

minimum for the reprojectionerror� It basically amounts to slight movements inside the valley
of solutions�

�This point was made by J� J� Koenderink at the meeting� Algebraic Frames for the Per�

ception Action Cycle� September ����� Kiel� Germany�
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can ignore missed correspondence� Using a few views� you still get uncertainty
in the �D transformation� You get a valley� a set of solutions� Remember� you
have bias in �D and bias in �D� You must now start a feedback process� to
get rid of the uncertainty� In some sense� bundle adjustment is some simple
form of feedback� Not very powerful� however� because it doesn�t use any new
measurements� It simply plays around the existing measurements� Whatever
feedback you use� to be successful� you have to introduce new measurements�
Arc� Are you saying that correspondence can be addressed in a feedback
scheme�
Soc� I am actually saying something stronger� Correspondence can only be
addressed in a feedback scheme� Let�s say you have two cameras and you point
one towards this tree and you point the other towards that mountain on the
other side and you are asked to solve the correspondence problem�
Arc� That�s not fair� These images contain nothing in common� It makes no
sense to correspond anything�
Soc� Aha� So� when you set up the correspondence problem you silently assume
that the cameras are looking at the 	same object�� that is� they have things in
common�
Arc� Obviously�
Soc� But that assumption is not explicitly incorporated into the de�nition
of the problem� Indeed� if we were to have a camera on Earth and a camera
on Venus looking at terrain� we would not expect to be able to correspond
anything� However� if we turned the cameras towards the sky� we certainly
could correspond� since our baseline is small related to the distance to the object�
Thus any assumption which forms the basis for a correspondence method can
be expressed as a constraint on the error in the �D transformation with respect
to the distance to the scene�
Arc� I get it� No matter what camera setup you have� there always must
be some assumption on initial camera positions together with assumptions on
minimum depth of the objects� If these do not exist� then nothing can ever be
done�
The state of the art algorithms usually obtain an approximate �D transfor�

mation� but to do so silently make assumptions about the positioning of the
cameras and the world� Trackers assume small motion relative to the distance
to the scene� Stereo cameras have calibrated baselines and minimum object
distance requirements�
For the scenes that we are usually interested in� using the state of the art

allows us to obtain an approximate �D transformation� So� now I can address
the correspondence problem� because I know approximately where the cameras
are pointing� Not bad at all� But what about all this signal processing in �D�
that cryptic stu� you talked about before�
Soc� We�ll get to it� but �rst� let us separate the correspondence problem
into two distinct problems� The �rst� which I call the 	large� correspondence
problem� consists of �nding accurate feature matches in the �rst place� This
problem is intimately related to aliasing in signal processing and is equivalent
to the standard feature correspondence problem� The second� which I call the
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	small� correspondence problem� consists of accurately locating feature points�
in a sort of correspondence with self� Euclid showed us the bias in the image
features� That�s the small correspondence problem� The 	magic eye� illusions
illustrate the large correspondence problem�

Euc� Very nice separation indeed� Before we can hope to �nd crude structure
from motion automatically� we must solve the large correspondence problem�
Before we can hope to �nd precise structure from motion� we must solve the
small correspondence problem�

Soc� I wonder� though� whether there is not a �ner breakdown than this which
can be achieved� In any case� we need tools to address these two problems� New
constraints� New mathematics� Let�s start by looking at the �D model that you
have totally ignored� Show me a �D model�

Arc� There are many ways to represent them and it�s not clear which one is
the best� Let�s take a �D triangular mesh� A set of triangles in �D� This is a
representation used very heavily in graphics� It�s a good one�

Soc� Fine� Let�s look at one triangle� any one� It has an orientation� right�
Arc� Yes� it�s usually denoted by a vector normal to the plane�

Soc� Good� Every triangle has its normal� There is something more� of course�
You have to know the depth of the three vertices� Correct�
Arc� Yes� you need to know the depth up to a scale of course�

Euc� And there is one more thing which we mustn�t forget�

Arc� We have fully de�ned the patch by specifying its normal and placements�
What more could we need�

Euc� I speak of the texture on the patch� Without this information� the patch
could never be used in vision� since there would be nothing to grab onto�
Soc� Great� Let�s summarize� We have images� correspondence of some sort�
and the �D transformation� the sum of a rotation with a translation� Now�
the model has normals� depth� and texture� Let�s consider the knowledge of
normals as 	shape� and the knowledge of scaled depth as 	structure�� So� the
�D model has shape �the normals of the triangles� structure �the scaled depth
of the vertices�� and texture�

Euc� I see where you are going� You want to �nd out how shape and structure
are related to rotation and translation through the images� You break the
problem further�
Soc� Exactly� Let�s take then two cameras looking at a plane� and let�s take a
feature on that plane�

Arc� OK� let�s take a point�
Soc� I don�t really like points because I have di
culty talking about them�
You see this point to the left of that picture over there at the upper right of the
red patch�
Arc� You mean the intersection of the yellow lines�

Soc� Yes� You see� to tell me something about a point you invoked lines� Lines
appear to be more basic things in images� Let�s take a line on that plane�
Arc� Fine� let�s take a line� You have a stereo system looking at a plane
containing a line�
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Figure ���� We can reconstruct the normal to a plane by only knowing camera
rotation

Soc� You showed us before formulas for reconstructing a line from two projec�
tions�
Arc� OK� we have two cameras �B�� T�� and �B�� T�� looking at a plane con�

taining line L in �D which projects to !l� and !l� in the images� Then� line L is�
l� � l�
l�T

T
� l� � l�T

T
� l�

�
�

Soc� Very good� The li�s are the derotated lines� right� You have li �
�B�T

i ���!li � BT !li� If you observe your formula carefully� you will discover
something dramatic�
Euc� Since Ld � ����� � B�T

�
!���B

�T
�
!��� the direction of L depends only on

the rotation between the two cameras� not on the translation�
Arc� Hmm� that sounds pretty good� I wonder if it is well known� I haven�t
seen it anywhere�
Soc� Well� it�s pretty simple� and I wouldn�t be surprised if someone thought
of it��

Euc� It�s pretty clear� The product ��� �� involves only the rotation� since ��
and �� are the derotated lines� That means that if I observe two lines on the
plane and I can correspond them in the two images� then I can �nd the normal
of the plane using only the rotation between the two views� Because I will be

�We have not been able to �nd a reference pointing to this result�
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able to �nd two lines parallel to the plane� Their cross product is the normal of
the plane �Fig� �����

Arc� Hmm� it sounds inviting� Maybe there is a hidden constraint here� People
have extensively looked at this problem� something should be known�

Euc� Let�s think� Consider a line in space� If we coordinatize our image lines
with homogeneous vectors as you told us� then our image line vectors will be
the normal to the plane containing the center of projection and the world line�
and rotated into the camera frame� Thus� if we have three cameras� then the
derotated image line vectors must lie in the same plane� since they all must
be perpendicular to the direction of the world line� This forms a constraint on
rotation which does not involve the positions of the cameras�

Arc� But I bet I can show you this constraint written in papers��

Euc� Sure� no doubt� But it seems that there is something that people missed�
You do not need to have a single world line�
Arc� What do you mean�

Euc� Well� consider a set of parallel lines in space and look at them from three
cameras�
Arc� Fine� I will get a set of lines in each image�

Euc� Good� Now� correspond any line in the �rst image� with any line in the
second with any line in the third� You still get the constraint� Now� the three
planes de�ned by a camera center with an image line will intersect a prism
in space� The three lines ��� ��� �� are normal to the prism�s faces and thus
coplanar�

Arc� Very interesting indeed� Let me summarize� If I observe a set of parallel
lines from three views and I consider at random lines !���!���!�� in the three
images� then�

�
T
� ��� � ��� � �

or

!�
T

�B
��
� �B�T

�
!�� � B�T

�
!��� � ��

a constraint on the rotation only� It�s a new constraint on directionality only
�Fig� ����� How should we call it�

Euc� Let�s call it temporarily the prismatic constraint� or the directionality
constraint�

Arc� But wait a moment� How is this constraint related to vanishing points�

Euc� Oh� if we identify cameras � and  by setting B� � B�� which corre�
sponds to the case where both �� and �� are taken from the same camera and if
these are di�erent parallel lines� then we obtain the vanishing point constraint�
Indeed� let�s say we have two or three parallel lines� and two cameras with ro�
tation"calibration matrices Bi� If camera  views image lines !�� and !�� and

�This constraint is written down in passing in the initial references on line correspon�
dences �����
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Figure ���� The prismatic line constraint operates on parallel lines

camera � views image line !�� we obtain the vanishing point constraint�

!�
T

�B�B
��
� �!�� � !��� � �

!�
T

�B�B
��
� !p � �

The quantity !p � !���!�� is called a vanishing point� and it is the point through
which all images of world lines of direction Ld will pass� The constraint says
that if we have a vanishing point in one image and a line in another image which
we know is parallel to the lines in the �rst camera� then we have a constraint
on the Bi�
If we further identify cameras � and � then given an image of a set of parallel

lines in one camera� we know that we must still have a zero triple product� Let�s
say we have three parallel world lines� and a camera with rotation"calibration

nonlinear function B � R� � R�� Given images of these three world lines !�i�
i � �� � � � � ��� We obtain the vanishing point existence constraint�

jBT!��B
T !��B

T !��j � �

This last constraint means nothing if B is a linear function� since the constraint
would be trivially satis�ed� However� in the case where there is some nonlinear
distortion in the projection equation� there will be a constraint on B� so we may
say that the prismatic line constraint operates on � �� or � cameras�
Soc� This is beautiful�
Euc� I don�t see how it relates to the epipolar or in general the multi�linear
constraints� It seems to be related only to image directionality�
Soc� That�s a good question and you should investigate it� But let�s get back
to �guring out how to use the constraint for the correspondence problem� for the
feedback� Now� I will tell you about doing signal processing in �D� Let�s look
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�rst at the small correspondence problem� The small correspondence problem
stems from the process of locating a point as� for example� the intersection of
two lines� There is a bias which becomes stronger as the angle becomes smaller�
If we have two intersecting lines projecting to two cameras� the angle between
the image lines will be di�erent� so our point localization will be di�erent� and
we will not have projections of the same world point�
The prismatic line constraint helps us solve the small correspondence prob�

lem in the following way� Let us assume that we have a patch out in space
with various corresponded lines on it� We can get an estimate of the rotation
between the two cameras using the epipolar constraint� From this we can esti�
mate the direction of all the lines on the patch� The perpendicular to all these
lines gives us the normal to the patch� Once we have this� we may texture map
our image textures onto this slanted patch from both cameras and perform our
measurements on this warped image� We may still have a bias in the location
of various points on the patch� but it will be the same bias for both cameras�
so this feedback mechanism will solve the small correspondence problem�
Euc� Amazing� I like this a lot�
Soc� We can now formulate the �rst part of our feedback loop� Whatever
we do to make �D measurements� we have to start from image measurements�
Whatever measurements we make in the image� we are constrained by the dis�
tortion that has happened because of the projection� If we could recover the
rotation� we could in principle �nd the shape of the patch which generated an
image texture �Fig� ����� Using this shape� we can perform signal processing on
the object�s surface� so that we have better input data to estimate the rotation
again and the translation�
Arc� I admit that I see something new�
Soc� The feedback loop has two distinct steps for processing multiple views� In
the �rst step� signal processing in the image provides answers for at least rotation
using the prismatic line constraint� which allows the beginning of the second step
that amounts to signal processing on the object plane� This classi�cation makes
intuitive sense also� If we hope to do better with a feedback loop� we must have
a place in the loop where some new information comes in� If we use the original
measurements� there wouldn�t be much hope for improvement� So� somewhere
in the loop we must make measurements again� The �rst appropriate place for
it is after rotation between views is estimated because then shape �orientation
of planes� is easily obtained� In the second step we can then map image texture
on the scene planes and improve the solution using the measurements which
now have all be taken in the same coordinate system� the one on the object�
Euc� I think we have come quite far� We understand the small and large corre�
spondence problem and that we need to address them in a feedback loop� after
our initial estimates� We understand the prismatic constraint� a new geometric
constraint� That will allow us to at least start performing signal processing on
the object�s surface� on a planar patch� and deal with the small correspondence
problem�
Soc� It sounds great� Now we need to address the large correspondence prob�
lem� Remember� we need to do it in some new way� not with points and lines�
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Figure ���� The Prismatic Line Constraint Allows Measurement on Object Sur�
face

Small Correspondence Large Correspondence
Prismatic Constraint �
Shape �slant and tilt� Structure �depth�
Rotation Translation

Figure ���� Concepts associated with small versus large correspondence

Arc� Easier said than done�
Soc� Let�s be realistic� You are telling me that the �D meshes are the underly�
ing machinery of the �D model� They have shape and structure and the di�erent
views are separated by a rotation and a translation� We understand that small
correspondence is related to shape �slant and tilt� and rotation through the pris�
matic constraint� By making analogs between small and large correspondence I
can make this table �Figure �����
We are missing an entry� The constraints for large correspondence� That�s

what you need to �nd�
Arc� Yes� but you tell us to think in a new way�
Soc� That means you need to think of new atoms and the �D model already
gives you a hint�
Arc� Hmm�
Euc� I think Socrates refers to the triangles of the mesh�
Soc� Yes� yes�
Euc� They are planar patches� So� the scene really consists of all these planar
patches� some of them really large and others very small�
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Figure ���� Light blue regions are in 	patch correspondence�

Soc� Exactly� So� as you have multiple views of a scene and you are already at
the feedback step� because using the state of the art you already found something
about the �D transformation� assume that you know the correspondence of a
whole patch� that is assume that you can correspond in the di�erent views the
whole patch� You don�t have any correspondence inside the patch� you just
know that a bunch of patches in the di�erent views are images of the same �D
patch�� Like in Fig� ���� where light blue regions are in patch correspondence�
Arc� I see� You want me to develop constraints for the �D transformation
using the whole patch as an atom� not points and lines�
Soc� Exactly� That�s what is needed�
Arc� But a patch with its texture can be any general function� Are you saying
that I should �nd how these functions change as I look at them from di�erent
views�
Soc� Yes� exactly� Let me simplify things somewhat� Let us �rst look at an a
really simple scene for which it is impossible to compute correspondence�
Euc� I have drawn this picture in �gure ���� Notice how if we mismatch our
lines� we get a curved patch rather than a planar one� If we choose the corre�
spondence which gives us the �at reconstruction� and we can use the constraint
that our patch is planar to get the correct correspondence�
Soc� But we still need to integrate this idea into our feedback mechanism� How
would this �t in�
Euc� We must realize that we do not have perfect camera positions� as was
the case in my previous drawing� Let us say that we have the situation in
�gure ���� where the physical setup is the exact same as before� except that we
have an error in our camera position which is the same as the distance between
the parallel lines� This time� the correct correspondences again are in black�
and the reconstruction is curved� The green reconstruction� based on incorrect

�A few researchers attempted to use patches� but they worked with points and lines inside
them� with no new results�
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Figure ���� Mismatched lines cause curved reconstructions
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Figure ���� Mismatched lines cause curved reconstructions

correspondences� is �at� So unless we know our translational positions to within
the wavelength of the texture� we have no way to �nd the correspondences based
on this constraint�

Arc� But if I draw the situation so that the two cameras have translations
parallel to the textured plane� as in �gure ���� then we do not get curved recon�
structions� And the other di�erence between your two situations is that in the
�rst picture� the translation between the two cameras is parallel to the plane
containing the lines� while in the second picture� this is not the case� In the �rst
picture� none of your reconstructions is curved� so that we cannot use that as a
constraint� I can see that it would be di
cult to tell the di�erence between the
�at and curved planes

Soc� Indeed� Archimedes� you are correct� But maybe we can use these ideas
as a base for our investigations� If we have a collection of textured planes� and
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Figure ���� Mismatched lines can cause �at reconstructions
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these planes do not contain any wavelength greater than �� then it is clear that
if our camera positions are not known to accuracy at least less than �� then it is
impossible to compute any sort of correspondence� We may be able to compute
the rotational calibration for the cameras from the patch correspondence� but
after that we are stuck�
On the other hand� if we know our camera positions to within 	  ��

and we have many textures with wavelengths greater than �� then it should be
possible to match with a high degree of probability using a constraint that we
haven�t yet discovered� The smaller 	 is� the higher the degree of probability
that we can �nd the correct match� Once we have the correct matches� we can
turn the constraint �which we don�t know yet� around to improve the camera
positions�
One can see the beginnings of the second part of the feedback mechanism

taking shape� If we at �rst use patches with wavelengths much greater than
our calibration error� we can then improve our camera position estimates� With
these new estimates� we can then use patches with smaller wavelengths� which
will be more accurate� Thus� a small number of these iterations should result in
excellent positional estimates� depending on the frequency content of the scene�
Arc� Aha� So� somehow we need to relate the wavelengths� that is� the fre�
quencies� in the projections of a patch with the �D transformation� the viewing
geometry�
Soc� Excellent� That�s what I will call harmonic computational geometry�
Up to now you were just doing computational geometry� You looked at points
and lines in many di�erent projections� Now you need to involve concepts of
harmonic analysis with geometric concepts� That�s the only chance you have to
match images�
Arc� There has been an e�ort recently in graphics to do geometric signal pro�
cessing� that is� signal processing on the �D meshes� Is this related to harmonic
computational geometry�
Soc� Graphics does synthesis� Computer vision does analysis� I am glad to
see that geometric signal processing is thinking along similar lines� although a
simpler problem� One does signal processing on �D meshes�
Arc� But it is very hard� How can I relate patches containing any kind of
function�
Soc� We can be reductionists� After all we know from Fourier�s theorem� that
just about any function can be written as the sum of sinusoids�
Arc� I see� So� let�s study what happens when the patch contains one harmonic
component�

Soc� Excellent� That�s the thing to do�
Arc� Well� let�s take a plane in space and a harmonic function on it� let�s say
sin����cos	x sin	y�  'x�� where � � �

Soc� Hold on� please� There is no need to utilize unnecessary symbolism� What
is a harmonic component� It is a set of parallel lines� equally spaced� isn�t it�

�Fourier�s work was initially rejected by the Academy of Sciences in Paris when presented
in ���� but was �nally published in �����
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Arc� But� � � � � of course� That�s what it is�
Soc� Then do me this favor please� Since we both like lines� let�s study the
problem like that� that is� the geometry of equally spaced parallel lines on a
plane in �D as imaged in multiple views� When you understand this� you will
be able to �ll the missing entry in the table I showed before about small and
large correspondence� Study this problem� That�s the �rst step in harmonic
computational geometry�
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Arc� First of all� I examined the prismatic constraint in detail and I found
that it is hidden inside the trilinear constraint� It was a lot of fun� I wrote the
proofs in Appendix � It turns out that no matter how many views you have�
you basically have three constraints�

� the epipolar constraint

�� the prismatic line constraint

�� the �D trilinear constraint

The constraints all have di�erent properties which can be used for di�erent
portions of structure from motion� The �rst constraint ensures that two points
correspond� The second constraint is only on rotation and ensures that lines
are properly aligned� The third constraint ensures that depths are consistent
when calculated from di�erent pairs of cameras� None of these constraints are
contained within the other� so we may consider them as completely separate�
Soc� Excellent� I like it when things simplify� How about the geometry of
parallel lines�
Arc� I developed with Euclid a beautiful framework and I can�t wait to tell you
about it� You were right� This stu� is a gold mine� it has many new problems�
Euc� We had to de�ne a new object to make it easy to communicate� We call
a plane with equally spaced parallel lines a singly textured plane� This is a new
object in computer vision and it will allow us to incorporate signal processing
directly into our framework� rather than adding it on as an afterthought� The
idea is to de�ne mathematical objects consisting of equally spaced lines on a
plane in �D �a sinusoid�� With this we can represent a simple texture on a
plane� By putting many of these objects together with appropriate constraints�
we may represent any arbitrary textured plane� but in a fashion which allows
for geometric reasoning about correspondence and reconstruction�
Soc� Go on�
Euc� Let us assume that we have a periodic texture in space which is embedded
in a �D plane� Since this is a periodic texture� we may think of it as a set of

��
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lines� equally spaced� embedded in the plane� We can represent the plane and
the texture embedded in the plane together in a geometrical way as follows�
We motivate our de�nition as fol�

Figure ��� The parameters of a tex�
tured plane

lows� Consider one line from the set of
equally spaced lines in the plane� call it
L�� We may represent this line using
Pl�ucker coordinates as L� �

�
Ld
Lm

�
� We

take Q� to be a point on L�� and the
point Qn � Q�  nd to be on the nth

line in the texture for some direction d�
It is simple to see that�

Ld�Q� � Lm�� ����

so that to get Lm�n

Lm�n � Ld�Qn �����

� Ld�Q�  nLd�d �����

� Lm  nL� �����

where L� � Ld�d� Note that since both
Ld and d are vectors which lie inside the
plane� we must have that L� is normal
to the textured plane� This leads us to the following de�nition� as shown in
�gure ��
A singly textured plane H is a set of parallel lines� equally spaced� em�

bedded in a world plane� We give the textured plane coordinates

H �

�
�Ld

Lm

L�

�
� �����

with LT

dLm � � and LT

dL� � �� The coordinates of each line in the plane�
indexed by n are�

Ln �

�
Ld

Lm  nL�

�
�����

Soc� That�s a good beginning�
Euc� Now you can ask speci�c questions� Suppose that you have two textured
planes H� and H�� They lie on the same world plane if and only if

LT

d��Lm��  LT

d��Lm�� � � �����

and

LT

d��L��� � � LT

d��L��� � � �����
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I put the proof in Appendix � The �rst condition basically says that the zero
lines in both textures have to intersect� The second condition says that the
normal to one plane has to be perpendicular to the direction of the lines in the
other plane�
Soc� How are all these lines imaged in some camera�
Euc� That�s easy� The set of image lines f!�ng of a singly textured plane H in
a camera with parameters �B�T� is

f!�n � !�n � B�T�Lm  nL� � Ld�T�g �����

where n �Z� Note that the image lines have homogeneous coordinates so that
the image lines are not equally spaced� as would appear from �rst glance at the
equation� To the contrary� as n goes to in�nity� the image lines will approach
the image line B�TL�� since that term will dominate�
Soc� Keeping with Archimedes� development let us now see how you recon�
struct a textured plane� We know how to reconstruct points and lines� How
about textures�
Euc� Yes� we did this� I will show you how to reconstruct a singly textured
plane from its images in four cameras� This reconstruction is non�intuitive in a
sense because we do not require that the cameras be looking at the same lines�
Each of the four cameras can look at a di�erent line� We only require that we
know which line has been imaged� that is� its index n� Given these four lines we
can reconstruct a textured plane� as in �gure ���� with the followingmulti�linear
equation�
We need four cameras to get a cute result� As you know� many of these

results can be transformed to new formulas using the camera collapse argument�
Soc� So� what is the basic result�
Euc� If we have a textured plane H which is imaged by four cameras into
image lines !�i� and we know that our cameras have parameters �Bi�Ti�� and
further� we know that the image lines have indices ni� then we may reconstruct
the textured plane as�

H �

�
�Ld

Lm

L�

�
� �����

�
X

�i� i� i� i�	�perm�
� � � ��

�
�ni�ni�j�i���i� j��i���i��
�ni�ni� j�i���i� j�i�T

T

i�
�i�

�ni�j�i���i� j�i�T
T

i�
�i�

�
� ����

Note that j � j is the signed magnitude� and since the coordinates are homo�
geneous� it does not matter which sign is chosen� The same result could be
obtained by de�ning

j�i��jj � j�j v �ij �����

where v is any arbitrary vector not in the plane of �i��j � I put the proof in
Appendix �
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Figure ���� Reconstructing a Textured Plane

Soc� What is the notation� X
�i���in	�P

�
����n	

�����

Euc� This is a summation which goes over all of the positive permutations of
���n�� putting each permutation into the indices �i���in�� Also� each camera can
look at a di�erent line� The index of the line which the camera is viewing is
called its line index� and �gures in the equations�
Soc� I see that the equation is a multi�linear one� That should make Archimedes
very happy because there is all this software for dealing with multi�linear con�
straints�
Euc� Yes� indeed� It also makes it easy to prove things� We do not need
to know that integer index of the lines in order to reconstruct the Ld� This
is important as it relates to the correspondence problem� because it means
that correspondence is irrelevant to �nd the direction of the lines in the singly
textured plane� We can also �nd the component Ld of the textured plane even
if we only have two image lines �� and �� which form a nonzero cross product�
This cross product ����� will be the direction of the lines of the singly textured
plane�
If we have a plane which contains two textures a and b which are in di�erent

directions� we can use the above result to �nd the normal to the plane if this
plane is viewed by cameras  and �� We merely must form the normal n as

n � ����a����a������b����b� �����
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Figure ���� The Quintilinear Constraint operates on �ve image lines

Note that the translation plays no part in the calculation of the surface normal�
and we only need the derotated �� so that shape can be computed just by
knowing rotation�

Soc� We already knew that from the prismatic line constraint� so this matches
with what we already know� From the di�erent views� by corresponding lines
at random� you can form prismatic constraints and thus �nd the rotation� or�
equivalently� the shape �that is� the normal of the plane�� So� what are the
constraints for the case of a singly textured plane�

Euc� In contrast the case of points and lines where we came up with three
constraints� in this case we have four constraints� The �rst one is just the pris�
matic line constraint on rotation� just with images of parallel lines instead of
the same line� The rest are as simple to form as the previous constraints� There
is grating line texture constraint a lattice texture constraint� and a mixed con�
straint� Keep in mind that all these constraints can be applied to fewer cameras
by the principle of collapse used earlier to derive the point trilinear and epipolar
constraint from the quadrilinear constraint� The �rst constraint is formed on a
singly textured plane with �ve cameras� The constraint is symmetric to all �ve
cameras� but can be thought of as the constraint resulting from the transfer of
one line in the singly textured plane reconstructed by four cameras to a �fth
camera� See Fig� ��� for a diagram�

Consider that we have �ve cameras �Bi�Ti�� and measure �ve lines !�i� which

have indices ni� We may form �i using the !�i and the Bi� Using the above
result� we may reconstruct the textured plane to obtain the H using the lines
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one through four� Using this reconstruction� we can �nd the �fth image line as�

�� � Lm  n�L� � T��Ld �����

If p� is a point on ��� we know that p� is perpendicular to ��� so that pT

��� � ��
We can use this with the above equation to formulate the constraint� Note that
since Ld is perpendicular to �� that Ld is a point on the line ��� but if we set
p � Ld� all of the right hand side terms disappear and we have no constraint�
Therefore we know that there is only one equation in our constraint� and we use
p� � Ld���� We can derive

� ��Ld����
T�Lm  n�L� � T��Ld� �����

�jLd �� Lmj n�jLd �� L�j � �Ld����
T�T��Ld� �����

we use vector algebra and the fact that LT

d�� � � to obtain �L
T

dLdT
T
�� for the

last term

�
X

�i���i�	�P
�

�����

��ni�ni���i���i��
T�����i��T

T

i�
�i�

 �ni�n���i���i��
T�����i��T

T

i�
�i�

 ni�ni���i���i��
T��i���i��T

T

��� �����

which we can expand to
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and this is equal to our constraint
The viewing geometry of a singly textured plane �quintilinear constraint��

Suppose we have �ve cameras �Bi�Ti�� and measure �ve lines !�i� which have

indices ni from a textured plane H� We may form the �i using the !�i and the
Bi and have the following constraint�

� �
X

�i���i�	�P
�

�����

ni�ni���i���i��
T��i���i��T

T

i�
�i� ������

Soc� Very nice indeed� This has similarity to the �D trilinear constraint�
Euc� Yes� it is philosophically identical to that constraint� that is� you get the
trilinear as a special case but here you do not have full correspondence between
lines� but only integer correspondence�
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Figure ���� The Octilinear Constraint operates on eight image lines

Soc� So what is the new constraint that�s similar to the epipolar constraint�
Euc� You ask for the octilinear constraint� which operates on eight cameras�
as in Figure ����
If we have eight cameras �Bi�Ti� which measure eight lines !�i on a doubly

textured plane� and the �rst four lines measure one texture with indices ni
i � ����� and the last four lines measure the other texture with indices ni
i � ������� then we may form the following constraint�

� �
X

�i���i�	�sP
�

ni�ni�ni�ni	 j�i���i� j � j�i���i	 j � j�i� �i� �i
 j�
T

i�
Ti� �����

where sP� indicates the positive permutations among the �rst four and the last
four indices� plus switching the �rst and last four sets of indices wholesale� The
proof is pretty easy� as it uses the �rst textured plane incidence condition�
Soc� Eight cameras� What am I going to do with a constraint on eight cameras�
Euc� Youmisunderstand the point� Remember the principle of camera collapse�
These multi�linear constraint are only posed in this way because it�s the simplest
form� much like the quadrilinear constraint is simpler and more symmetric than
the trilinear constraint� The octilinear constraint can be 	collapsed� into a
constraint on two cameras� where you have extracted two lines in each direction�
The quintilinear constraint can be collapsed to a constraint on three cameras�
with two lines in each of two cameras and one in a third camera�
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Figure ���� The Hexalinear Constraint operates on six image lines

Euc�

Next is the mixed constraint� which operates on six cameras� as in Figure ����
If we have six cameras �Bi�Ti� which measure six lines !�i on a doubly

textured plane� and the �rst four lines measure one texture with indices ni and
the last four lines measure the other texture with unknown indices� then we
may form the following constraint�

� �
X

�i���i�	�P
�
�����	

ni� j�� �� �i� jj�i���i� jTi��i� ������

We may reconstruct the L��� of the singly textured plane from the �rst four
cameras� We may reconstruct the Ld�� of the world line using the last two
cameras� Using the formulas for the reconstruction of a textured plane and the
condition for two planes to coincide� we may easily obtain the equation�
Soc� That seems like a strange constraint� What is a case you could use that
constraint�
Euc� Let�s say you have a texture for which you can get orientation in one
direction� but can�t possibly obtain individual lines� and the other direction has
identi�able lines� like in �gure ����
Soc� This is all fascinating� If I understand correctly� these three multi�linear
constraints will allow you to solve the large correspondence problem inside the
patch� But before we go on� let�s have an overview of what we have accom�
plished�
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Figure ���� Example of texture on which hexalinear constraint would work

Euc� First of all� we have divided the feature matching problem on images into
the small and large correspondence problems� We can see that di�erent types
of correspondence and scene properties belong to these two problems� so this
separation makes sense theoretically� Our prismatic line constraint needs only
patch correspondence� while our quintilinear and octilinear constraints need
known integer indices� Our hexalinear is a mixed constraint and this needs
patch correspondence for one texture and integer index correspondence for the
other�

Further� we have seen that the small correspondence problem can be ana�
lyzed independent of translation� while the large correspondence problem is in�
herently a translational problem� This comes from the basic fact that rotation
is associated with local shape �surface normal�� while translation is associated
with global shape �depth�� See Table ��� for a synopsis� The question mark is
replaced by the multi�linear constraints�

Soc� This is all what I was hoping for� Now you have a chance of addressing and
overcoming the correspondence problem that has plagued this �eld for decades�
Let me see if I can synthesize some global view of the process� State of the art
gives you some approximate solution� or rather� a set of solutions �lying on the
valley�� This should be enough to allow you to match patches in the di�erent
views� By the way� is that easy�

Arc� Nothing is easy� but given the very large amount of literature on contour
tracking� it should not be that hard to match patches ���� And I am not sure
we have to go completely through the state of the art� We may need to re�think
how to mix features and signals�
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Figure ���� By appropriately warping the images �if we know the rotation be�
tween views�� we can make them as if they come from frontoparallel patches�

Soc� OK then� The next step is to identify a harmonic component in the
images� Let�s worry about this later� Having then orientation inside the patches�
the prismatic constraint will provide rotation and shape� This will allow you
to map the texture on the scene plane and start signal processing in �D� That
is� since you know the normal of the patch� you can warp the image so that
it appears as if the surface patch is fronto�parallel� thus with least distortion�
Now you can do signal processing� It�s easier because it�s as if you do it in �D
�Figure �����

Now it�s time for the three multi�linear constraints to do their job� You
can use them to better estimate translation or the other way around� Having
translational estimates� solve for the indices� i�e�� correspondence� To be frank
with you� I think this is the beauty of the framework you have developed� You
transformed the correspondence problem into a discrete question� Given transla�
tion� the new multi�linear constraints become systems of Diophantine equations�
equations where the unknowns are integers� These integers give you the cor�
respondence� There is a lot of literature on Diophantine equations� Now you
have a chance to develop theorems relating the ability to solve the correspon�
dence problem in a patch with frequencies in the path and with the uncertainty
in the �D transformation� You realize� of course� that if you don�t have any
wavelengths greater than �� then if your camera positions are not known to
accuracy at least less than �� then it is impossible to compute correspondence�
But you have the symmetric condition too� where you will be able to compute
correspondence� In this new framework� you can write down these conditions in
formulas� You can develop the mathematics of visual correspondence�

Arc� This is all good� but let�s get back to actually �nding these lines in images�

Soc� That�s the signal processing part of the job and I hope you develop it
thoroughly�

Euc� I have been thinking about this all the time� Let�s �rst realize that these
lines in the patch are not necessarily visible to the human eye� they are virtual
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lines� They are one harmonic component out of the multitude of harmonic
components comprising the image� Let me show you a couple of examples
where I found them using some simple Fourier analysis �Figure �����
Soc� But these are pretty periodic and clean textures� Can�t you do better
than that�
Euc� I would have to think about that� There may be many ways� But people
have been studying textures recently� because they want to do better texture
mapping and it appears that most textures have a few strong components�
Soc� Not bad� Euclid� I am pretty sure you can start various �ltering opera�
tions and you can pull out those lines of interest� But this is a feasible problem
and I will sketch you a solution in geometric terms� Here it is� On the world
planar patch you have parallel lines� When you project onto the di�erent views�
the lines� in general� will intersect at their vanishing point �Figure �����
Arc� So far� so good�
Soc� So the job is to �nd all these pencils in the di�erent views of the patch�
You can do this with an amazingly stupid and exhaustive search� You have to
be careful though� because textures �parallel lines� with the same direction but
di�erent wavelength still have the same vanishing point� Also� to be successful�
you have to do the search not on the plane� but on the sphere�
Arc� There must be some smart ways to do this� probably much easier too�
First of all� in this solution you cannot do good signal processing because the
lines intersect� The key I believe is the rotation� because knowing it allows you
to warp the images and make the lines parallel� And for most textures we should
be able to pull out the harmonic components �Figure ������ But anyway� when
we deal with images we have to involve the concept of scale�
Euc� Yes� scale is a big thing� It seems that human brains use di�erent scales
when processing di�erent parts of an image� and it�s not clear what they do
exactly�
Arc� Sure� but images are two�dimensional�
Euc� Clearly�
Arc� Well� scale is one�dimensional� Don�t you think something is missing�
Soc� Since � �   � it seems that indeed something is missing�
Arc� Exactly� I don�t know what that is� but I have a candidate�
Soc� What would that be�
Arc� Directionality�
Euc� Directionality�
Arc�

Yes� intrinsic orientation� Most textures have a directionality� that is� a small
set of directions where most of the information resides� And I think it would not
be hard to pull them out� After all� if we pull out one harmonic component� we
will be able to correspond lines� If we have two components� we will correspond
points�

�Observing a planar patch containing one harmonic component from di�erent viewpoints
results in images that no longer have one frequency� i�e�� the parallel lines are now pencils�
The prismatic constraint requires any one of the pencil lines� Finding them is a very involved
signal processing operation and is discussed in a forthcoming paper�
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Figure ���� Simple signal processing provides a set of virtual lines �sinusoids��
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image 1 image 2

image 3

Figure ����

Figure ���� For some textures it�s easy to pull out harmonic components� for
some others it�s hard�
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Soc� Excellent� I am really intrigued by the possibilities� I can see �D pho�
tography on the near horizon� There are a few immediate things to be done�
however� You need to generalize the constraints for any number of cameras�
Mix them up� points� lines� singly and doubly textured planes�
Arc� That�s not very hard� Let�s assume that we have the rotational calibration
for all the cameras� However� even if we did not use this constraint� we could
still �nd the rotation as an eigenvalue minimization�
Let us assume that we have M cameras and that we want to extend our

constraints to �nd the Ti considering all of the cameras and not just the �xed
number which happen to appear in the equation�� Note that all our constraints
�except for the prismatic� are of the form

nX
i�

ci�
T

i Ti � � ������

where n is the number of cameras� Let us also assume that n  M � We may
form an equation for every choice fk���kng of n numbers from the set f��Mg�
Let us now set

T �

�
�

T�

���
Ti

���
TM

�
�������

T� �

�
�

T�

���
Ti

���
TM

�
�������

������

Each of our constraints is a linear equation over the �ki � Tki � and possibly
the nki � We can form this into a linear equation�

nX
i�

fi��k� � ��� �kn � nk� � ��� nkn��
T

ki
Tki ������

With each choice of n lines from the M lines� we obtain another constraint�
so we get �Mn � equations� which we put into matrix form�

�
�

���
� � � f���k� � ��� �kn � nk� � ��� nkn��

T

k�
� � � fn��k� � ��� �kn � nk�� ��� nkn��

T

kn
� � �

���

�
���T � �

������

where the terms ki are always in the ki column� Let us call this matrix A� A
has �Mn � rows and n columns� Let us form the matrix C � ATA� It is easy
to see that T must be contained in the subspace spanned by the eigenvectors

�Here Archimedes uses the methodology in ���� which introduced a multiframe framework
to computer vision�
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corresponding to the zero eigenvalues �we call these the zero eigenvectors�� For
every corresponded object j �point� line� singly and doubly textured planes�� we
get a matrix Cj from the Aj matrix� If we add up all the matrices Cj

Q� �
X
j

Cj ������

then if there is no noise� then the zero eigenvectors will span a subspace which
contains T� Because the problem is translation invariant� we have three extra
degrees of freedom� so that our matrix Q� will have rank M � � in the general
case� If we set T� � �� then we �x the location of the �rst camera to be at the
origin of the �ducial coordinate system� If we form Q to be the bottom right
��M � � square matrix of Q�� then we know that

�T��TQT� � � ������

That is� the zero eigenvectors of Q give possible solutions for our Ti� We thus
have a method for integrating any of our constraints over any number of cameras
to obtain the translation�
Soc� Very cute� How about camera collapse�
Arc� We can extend this treatment of arbitrary numbers of cameras to account
for circumstances where there are multiple image lines in a single camera� Thus
we could use the octilinear constraint with two cameras� When we form our
matrix Q�� let us consider each image line to be formed from a di�erent camera�
Let us consider that we have M cameras and N image lines� Let us form the
�N��M matrix C� which we think of as composed of � by � blocks� Each block
contains either zeros or an identity matrix I�� An identity matrix is contained
in the ith block down and jth block across if image line i belongs to camera j�
Now we can form a new matrix S� which is

S� � CTQ�C ������

From this� as before� we can take the bottom right ��M � � square matrix to
form S� We thus have again that�

�T��TST� � � ������

but now our image lines need not correspond to our camera positions�
Soc� All your formulas look nice and cute� The other thing you need to do is
use this theory to calibrate hundreds of cameras�
Arc� Hundreds of cameras�
Soc� Yes� you heard right� If you want to achieve �D photography and video
you have to see something from all around� right�
Arc� That�s correct� but we humans look from two viewpoints and we have �D
photography�
Soc� We don�t have �D photography� We have �D perception� It just feels like
�D photography�
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Arc� Hmm�
Soc� Perception is like a controlled hallucination process� You see this person
moving over there and you perceive the movement in �D� but you don�t see one
side� You don�t care though� You have instantiated high�level models that you
�t to the �D data you obtained and you have a good description of what takes
place� In any case� the structure of human visual space is quite complicated�
we know it is a non�Euclidean space but we don�t know what it is exactly�
Recent experiments appear to suggest that human visual space is operationally
de�ned�� That is going to make things pretty complicated� But let�s get back
to actions�
Euc� I guess that�s a good problem� to �gure out action representations�
Soc� That�s the problem as I explained at the beginning� But how are we
going to obtain these representations�
Arc� Well� usually researchers use some stick �gures and � � �
Soc� We will not get far with sticks� Here is my point� Before we try to �nd
action representations� we should have examples of them� Would you be able to
study computer vision if you didn�t have a way to make pictures and put them
in a computer�
Euc� Of course not�
Soc� In the same way� to study actions you must have a way to make pictures
of them� You cannot simply do it by videotaping an action� because actions
look di�erent from di�erent viewpoints� You need the action in �D�
Euc� And then what�
Soc� Then the revolution comes� because when you have many action models
you will be able to do statistics on them� you will be on your way to do learning�
These �D action models constitute new objects that we didn�t have before� The
ultimate action representations are very complicated� They probably consist of
patterns� a mixture of motor programs and visual space�time representations�
Euc� I see your goal� In the meantime� we can have �D video�
Soc� Good� So� can you calibrate hundreds of cameras� To my knowledge
there are only three multi�camera labs in the country� one at CMU� one at
Maryland �the Keck Lab� and one at Stanford �under construction�� But in a
few years� the whole world will have labs like these� The whole country will have
them� they will be the Big Brother networks�� This calibration problem is very
hard� You will have to �nd with very high accuracy a few hundred cameras�
that is� the matrices Bi and the vectors Ti� Points and lines won�t do�
Arc� Sure� I can calibrate� Here is my algorithm�

� Using as a calibration target a singly textured plane� we may �nd the
rotational and internal calibration up to a global a
ne transformation�

�� Using a textured plane with two orthogonal sets of parallel lines� we may
then �nd this global a
ne transformation�

�This means that dependingon what you do 	what task you perform
� youmay use di�erent
space�time representations� Koenderink has been investigating this possibility�

�Cameras are becoming less and less expensive� It is anticipated that in a few years �nite
life cameras will be available for the cost of a few dollars�
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�� Using a point visible from many cameras� we may obtain an initial rough
translational calibration�

�� Using the prismatic line constraint� we may �nd the normal to the cali�
bration target and unwarp the images of it�

�� Using these unwarped images we may determine the location of the tex�
tured plane to much greater accuracy since we can use Fourier analysis
over a much larger support�

Soc� Excellent� Make this accessible to the whole world� Put it on the World
Wide Web�
Arc� I think it makes sense to use it and make �D models �rst� and then put
it on the Web�
Soc� Fine� A lot of work to do� Please let�s meet again when you can make
the �D models� Then we�ll push forward� It is possible that you may have to
develop new cameras for the task ����� But let�s see what can be done with the
existing cameras�
Euc� But� Socrates� with all this work we help Big Brother� We contribute to
the enslavement of humanity�
Soc� Euclid� the current structure of the distribution of power in various sec�
tors� government� industry� and education� makes it impossible to stop it� The
only chance you have is to be a number of steps ahead � � �
But for sure� I see you two having a lot of fun with this new harmonic sort

of geometry� You can do new computational geometry because the surfaces you
will be dealing with will be painted� they will have texture and they will be just
like what we see� the world with its patterns and colors in three dimensions� You
deal not just with surfaces� but with surfaces having a function �the texture�
painted on them� So� you should let the computational geometers know about
this possibility� It�s possible that they are already thinking along these lines�
Like the researchers in computer vision who are realizing that feedback is an
essential mechanism in visual perception� you should let them know too� The
idea that structure from motion could happen by using directly� at some stage�
the outputs of �lters applied to image patches is very sympathetic to many
practitioners� As for the people in graphics� I would say that they are the closest
to this� with geometric signal processing� It is just that they work with meshes
and they haven�t yet worried too much about obtaining the �D meshes in the
�rst place� You should tell them as well� They are interested in �D photography�
Finally� don�t forget the mathematicians� They have done amazing things in the
analysis of signals� But these signals lie on a plane� the image� We can study
signals on a �D surface through their projections on the imaging surface� The
simple case you considered �a plane in �D� shows that you can do many new
things with harmonic components� i�e�� with parallel lines� Tell them� they may
come up with new mathematics� And let�s meet again when you can apply all
this to get �D photography� It�s not going to be an easy job� but you have
the basic tools� Who knows� maybe this piece of simple math could help steer
toward fruitful avenues various debates regarding the working of human vision�
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like the detector hypothesis vs� the spatial frequency hypothesis� The 	detector�
people had the upper hand recently not only because the investigations of Hubel
and Wiesel led to a Nobel prize but also because �D recovery was based on
features �points and lines�� Now the 	spatial frequency� people have some of
the tools needed to stage a comeback� In my view� both the 	detector� people
and the 	spatial frequency� people will prove right because� in order to do signal
processing you need �rst to know where to apply it� at which patch� and I think
that it is features that will tell you that� because there is nothing else early in
the process of building a �D model of the scene�that is� �rst features and then
signals in a feedback loop that utilizes all the information� Thank you for the
opportunity to talk with you� I wish the best�
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Appendix
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Point Trilinear To Epipolar

and Line Trilinear Proof

Let us step back for a moment and look at the measurements of the images
which we are able to obtain� From this� we discover that instead of considering
the epipolar� trilinear� quadrilinear� and prismatic constraints� it is su
cient to
consider the epipolar� prismatic� and a modi�ed �D trilinear constraint which
only considers translation�

As we have formulated it� the line trilinear constraint operates on three image
lines �i in three cameras� If we choose any image point p which is incident on ��

�pT
�� � ��� the equations hold� Note that although we may choose any incident

point� we can only obtain two linearly independent equations� since the equation
expressing the point trilinear constraint is linear in all the lines� and the space
of all points incident on �� is of rank �� Further� if we choose two points which
are linearly independent� then this accounts for all the constraints possible on
these three lines�

The point trilinear constraint operates on three corresponding image points
pi� The equation will still hold if we choose any two lines �� and �� which are
incident on p� and p�� respectively� so that p

T

i �i � �� for i � f� �g� We see
here that we can create at most four linearly independent equations� since we
may choose two lines for each of two points� Again� if we choose two sets of
two linearly independent lines� then these four equations account for all possible
constraints on three points�

The corresponding point formulations of the trilinear constraint is equivalent
to the corresponding line formulation plus the epipolar constraint� The line
correspondence formulation has the advantage of being able to be split into the
prismatic line constraint plus a �D trilinear constraint� Therefore it is desirable
to use the line trilinear constraint plus the epipolar constraint rather than using
the point trilinear constraint�

Let us show that where there are three image points� the point trilinear con�
straint is equivalent to the line trilinear constraint plus the epipolar constraint�
See �gure � for a diagram�

Given three world points Pi projected into three cameras j� with parameters
�Bj �Tj�� at !pj�i� The constraints on the positions of the cameras using the point
trilinear constraint are equivalent to the constraints on the cameras using the

��
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Figure �� With three world points� an equivalence of points and lines is ob�
tained

line trilinear constraint plus the epipolar constraint�

Proof� We work with the calibrated coordinates pj�i� Note that we may
de�ne image lines�

�j�� � pj���pj�� ����

�j�� � pj���pj�� �����

�j�� � pj���pj�� �����

A consequence of this is that we also have

pj�� �
�j����j��

jpj�� pj�� pj��j
�����

pj�� �
�j����j��

jpj�� pj�� pj��j
�����

pj�� �
�j����j��

jpj�� pj�� pj��j
�����

We assume without loss of generality that T� � � We may form our twelve
trilinear equations by writing four for each point� For point  we get �by choosing
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lines � and � through point ��
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for point � �choosing lines � and �� we get similarly
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for point � �choosing lines  and ��� we get
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Let us look closely at equations ����� and ������ We see that ����������� and ������
����� are just points on line  in camera �� So these two equations are equivalent
to the line trilinear constraint using the �j��� Similarly� equations ����� and �����
can be derived using �j�� and equations ����� and ���� can be derived using
�j��� The remaining equations are equivalent to the epipolar constraints between
pairs of points� in the following manner�
We may equate the T� terms in equations ����� and ����� to obtain �switching

some triple product orders also��
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similarly� using equations ����� and ������
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We now note that since ���i����i gives the direction of line i� and so does
���i����i� we know that these vectors have the same direction� but have di�erent
magnitudes� We may therefore substitute and divide out the magnitudes� We
want equations in only cameras  and �� so we thus may derive the following
from the above equations�
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By substituting points for cross products of lines� we may change equations �����
and ����� to�
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�
T

���p���
�����

TT

������
T

���p���

�
T

���p���
�
TT

������
T

���p���

�
T

���p���
�����

By multiplying through the left denominators� subtracting the above equa�
tions� and using equations in �gure ��� we may obtain�

�T��������������
Tp��� �

TT

������
T

���p����
T

���p���

�
T

���p���
�
TT

������
T

���p����
T

���p���

�
T

���p���

�����

�
TT

�����

�
T

���p����
T

���p���
��T���p����

T

���p����
T

���p���

� �
T

���p����
T

���p����
T

���p���� �����

Now let us do a simple derivation� First� we know that we may write

���� � ����P� � T����P� � T��� �����

� ���P��P�  T��P�  P��T�� �����

similarly� we get

���� � ���P��P�  T��P�  P��T�� ����

and

���� � ���P��P�  T��P�  P��T�� �����
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where the �i are scale factors� Since T� � �� we may also write

p��i � �iPi �����

Using these substitutions� we see that the parenthesized term in the RHS of
equation ����� is�

�������������jP� T� P�jjP� T� P�jjP� T� P�j

� jT� P� P�jjT� P� P�jjT� P� P�j� �����

and this is zero� So that we have derived that

�T��������������
Tp��� � � �����

which is just the epipolar constraint for point  with cameras  and �� If we
subtract other pairs of equations ����� through ������ we may obtain the epipolar
constraints for points � and �� We �nd the epipolar equations between cameras �
and � by equating the T� terms instead of the T� terms� �
We now split the line trilinear constraint into the prismatic line constraint

and a new �D trilinear constraint�
If we have three cameras with parameters �Bi�Ti�� and a world line which

projects to !�i� then the prismatic line constraint holds� There is only one other
independent constraint� and it is�

� �
X

�i���i�	�P� �����	

�Ti� �
T
�i� j�i���i� j �����

where j � j is the signed magnitude�
Proof� Recall the line trilinear constraint�

TT

����
T

�p� �TT

� ���
T

�p���T��p��
T������� � � �����

Let us introduce the notation Q � ������ We know that the prismatic line
constraint holds� that is j�� �� ��j � �� This is the same as QT

�� � �� Since Q
and �� are perpendicular� we know that we may choose p� � Q���� Using this
de�nition� we may derive from equation ���� that

TT

���j�� Q ��j �TT

���j�� Q ��j � �T���Q�����
TQ � � �����

TT

���j�� Q ��j � TT

���j�� Q ��j � �QT
T

����
TQ ���T

T

�Q�
TQ � � �����

but since �
T

�Q � �� the last term is zero and we can derive

T���j�� �� Qj T���j�� �� Qj T���j�� �� Qj �����

Since the prismatic line constraint holds� it is clear that Q is arbitrary� as long
as it does not lie in the same plane as the �i� We therefore remove it and replace
it with the signed magnitude j � j to obtain our result� �
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Intersection of Two

Textured Planes

Let us assume that we have two textured planes H� and H� which are co�
incident� Because of this� we know that line

� Ld��
Lm��

�
intersects with all lines� Ld��

Lm���i�L���

�
� and

� Ld��
Lm��

�
intersects with all lines

� Ld��
Lm���i�L���

�
� From the con�

dition on intersection� and with i� � �� we obtain

LT

d��Lm��  LT

d��Lm�� � � ����

With i� � � we obtain

LT

d��L��� � � �����

Similarly� with i� � � we obtain

LT

d��L��� � � �����

��



�� Visual Space�Time Geometry



Textured Plane

Reconstruction

We start by �nding an expression for Ld� Since H is homogeneous� we may
treat the following as the actual Ld� and multiply through later to obtain the
expression in the above fact� In order to reconstruct the Ld� we choose any pair
of image lines �� and �� which have a non�zero cross product� Note that the
cross product between any two image lines will have the same direction� but
di�erent magnitude�

Ld � ����� �����

Now let us �nd the Lm and L� associated with our H� We can form four
equations from the projection of the texture�

�i�i � Lm �Ti�Ld  L�ni  � i � � �����

In order to convert these equations to more manageable scalar equations� we
de�ne

ri � Ld��i �����

so that ri is perpendicular to �i� yielding

rTi �i � � �����

We multiply the four equations ����� through by the ri to obtain the scalar
equations�

� � rTi Lm � rTi �Ti�Ld�  L�ni  � i � � �����

We wish to solve for the L� and Lm� It would seem that we do not have enough
information� since the L� and Lm have six coordinates� but we have only four
equations� However� we know that both L� and Lm must be perpendicular to
Ld� which we already know� so that we really only have four coordinates to �nd�
We know that the �i� Lm� and L� are all perpendicular to Ld� For this

reason� we may express any of these vectors in terms of two of the other ones�

�
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Let us derive the formula for expressing �i in terms of a linear combination of
�j and �k�
We would like 	 and 
 so that�

�
�j �k Ld

�
�
�	

�

�
� � �i �����

We thus have that �
�	

�

�
� � �

�j �k Ld

���
�i �����

We can derive that that�

	 �
j�k Ld �ij

j�k Ld �j j
����


 �
j�i Ld �jj

j�k Ld �j j
�����

For convenience� we de�ne the notation

�mn � j�m Ld �nj �����

And we get the following expression for �i�

�i � �j
�ki
�kj
 �k

�ij

�kj
�����

It is important to note that this equation only holds because these vectors are
all in the plane perpendicular to Ld� Another identity that we will use is that

rTj �k � �kj �����

which follows from the de�nitions of ri and �kj � Also� it is easy to see that�

�ij � ��ji �����

And we may also derive that

�ij�
h
k � �ik�

h
j � �ih�

j
k �����

We also note that since ri � Ld��i� we can derive that

rTi �Ti�Ld� � �jLdj
�Ti�i �����

Since Lm and L� lie in the same plane as the �i� we can form for the sake of
derivation that�

Lm � a��  b�� �����

L� � c��  d�� �����
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Using these expressions� we may substitute into ����� to obtain�

� � brT��� � rT��T��Ld�  drT���n� ����

� � arT��� � rT� �T��Ld�  crT���n� �����

� � rT���
�a���  b����

���
� rT� �T��Ld�  rT���n�

�c���  d����

���
�����

� � rT���
�a���  b����

���
� rT� �T��Ld�  rT���n�

�c���  d����

���
�����

We may rewrite the above equation� then� as

� � b���  jLdj
�TT

���  d���n� �����

� � a���  jLdj
�TT

���  c���n� �����

� � a���  b���  jLdj
�TT

���  n��c�
�
�  d���� �����

� � a���  b���  jLdj
�TT

���  n��c�
�
�  d���� �����

And since jLdj
� � ���� we may further rewrite these equations as�

� � b TT

���  dn� �����

� � a� TT

���  cn� �����

� � a���  b���  ���T
T

���  n��c�
�
�  d���� ����

� � a���  b���  ���T
T

���  n��c�
�
�  d���� �����

We would like to solve for the c and d so that we can �nd L�� We solve for a
and b in terms of c and d as follows�

a � TT

��� � cn� �����

b � �TT

��� � dn� �����

Substituting equations ����� and ����� into equation ���� we obtain�

� � �TT

��� � cn���
�
�  ��T

T

� �� � dn���
�
�  ���T

T

���  n��c�
�
�  d���� �����

and into equation ����� we obtain�

� � �TT

��� � cn���
�
�  ��T

T

� �� � dn���
�
�  ���T

T

���  n��c�
�
�  d���� �����

Collecting the c and d� we obtain�

� � ���T
T

��� � ���T
T

���  ���T
T

���  c�n� � n���
�
�  d�n� � n���

�
� �����

and

� � ���T
T

��� � ���T
T

���  ���T
T

���  c�n� � n���
�
�  d�n� � n���

�
� �����
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We eliminate the d to obtain�

�n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

����  c�n� � n���n� � n���
�
��

�
�

� �n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

����  c�n� � n���n� � n���
�
��

�
�

�����

We eliminate the c to obtain�

�n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

����  d�n� � n���n� � n���
�
��

�
�

� �n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

����  d�n� � n���n� � n���
�
��

�
�

����

If we set

k ��n� � n���n� � n���
�
��

�
� � �n� � n���n� � n���

�
��

�
� ���

��n�n�  n�n���
�
��

�
� ����

 �n�n�  n�n���
�
��

�
� ����

 �n�n�  n�n���
�
��

�
� ����

And by doubling the terms and permuting the sigmas� we get

�


�
��n�n�  n�n���

�
��

�
�  �n�n�  n�n���

�
��

�
� ����

 �n�n�  n�n���
�
��

�
�  �n�n�  n�n���

�
��

�
� ����

 �n�n�  n�n���
�
��

�
�  �n�n�  n�n���

�
��

�
�� ����

�


�

X
�h i j k	�perm�
�����

nhni�
h
i �

j
k ����

With this de�nition of k� and noting that ��� � �jLdj
�� we may now solve for c

and d�

c �


k
��n� � n���

�
���

�
�T

T

��� � ���T
T

���  ���T
T

���� ����

��n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

����� �����

and

d �


k
��n� � n���

�
���

�
�T

T

��� � ���T
T

���  ���T
T

���� ����

��n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

����� �����

We know that L� � c��  d��� Let us split up our equation as follows

L� � n�v�  n�v�  n�v�  n�v� �����
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We calculate from the c and d that

v� �


k
�����

�
��

�
�T

T

���  ����
�
�T

T

��� � ����
�
�T

T

��� �����

 ����
�
�T

T

��� � ����
�
�T

T

���  ����
�
�T

T

���� �����

which� by equation ������ we can simplify to�

v� �
���
k
����

�
�T

T

��� � ���T
T

���  ���T
T

���� �����

We then calculate that

v� �


k
�����

�
��

�
�T

T

���  ����
�
�T

T

��� � ����
�
�T

T

��� �����

 ����
�
�T

T

��� � ����
�
�T

T

���  ����
�
�T

T

���� �����

we can simplify to�

v� �
���
k
�����

�
�T

T

���  ���T
T

��� � ���T
T

� ��� �����

We then calculate that

v� �


k
����

�
����

�
�T

T

���  ���T
T

��� � ���T
T

���� �����

����
�
����

�
�T

T

���  ���T
T

��� � ���T
T

������ ����

Since ���
�
� � ���

�
� � ������ we can simplify this to

v� �
���
k
��� �

�
�T

T

��� � ���T
T

���  ���T
T

� ��� �����

We then calculate that

v� �


k
����

�
���

�
�T

T

��� � ���T
T

���  ���T
T

���� �����

����
�
���

�
�T

T

��� � ���T
T

���  ���T
T

���� �����

Since ���
�
� � ���

�
� � ��� we can simplify this to�

v� �
���
k
����

�
�T

T

��� � ���T
T

���  ���T
T

���� �����

We thus have the following form for L�

L� �
���
k
�n�����

�
�T

T

���  ���T
T

���  ���T
T

���� �����

 n�����
�
�T

T

���  ���T
T

���  ���T
T

���� �����

 n�����
�
�T

T

���  ���T
T

���  ���T
T

���� �����

 n�����
�
�T

T

���  ���T
T

���  ���T
T

����� �����
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We may collect the TT

i �i to get another form for L��

L� �
���
k
��n��

�
���  n��

�
���  n��

�
����T

T

��� �����

�n��
�
���  n��

�
���  n��

�
����T

T

��� ����

�n��
�
���  n��

�
���  n��

�
����T

T

��� �����

�n��
�
���  n��

�
���  n��

�
����T

T

��� �����

� �����

We can write this more compactly as a sum over all the positive permutations
of �� �� �� ���

L� �
���
k

X
�i���i�	�perm������	

ni��
i�
i�
�i�T

T

i�
�i� �����

Now that we have L�� we may solve for Lm� Using equations ������ ������
and ������ we obtain the following formula for Lm in terms of c and d� which we
know�

Lm � ��T
T

��� � ��T
T

��� � n�c�� � n�d�� �����

We may substitute c and d into this equation to form�

Lm �


k
��n� � n���n� � n���

�
��

�
����T

T

��� � ��T
T

���� �����

��n� � n���n� � n���
�
��

�
����T

T

��� � ��T
T

���� �����

�n��n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

������ �����

 n��n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

������ �����

�n��n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

������ ����

 n��n� � n���
�
���

�
�T

T

��� � ���T
T

���  ���T
T

������� �����
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We collect terms based on ninjTT

k�k to obtain

Lm �


k

�
TT

����n�n�� �
�
��

�
��� � ����

�
���  ����

�
��� �����

�����
�
���  ����

�
��� � ����

�
���� �����

n�n�� �
�
��

�
��� � ����

�
���� �����

n�n����
�
��

�
���  ����

�
���� �����

n�n����
�
��

�
���  ����

�
���� �����

n�n�� �
�
��

�
��� � ����

�
���� �����

n�n�� �
�
��

�
��� � ����

�
����� �����

 TT

����n�n����
�
��

�
���  ����

�
��� � ����

�
��� �����

 ����
�
��� � ����

�
���  ����

�
���� ����

n�n����
�
��

�
���  ����

�
���� �����

n�n�� �
�
��

�
��� � ����

�
���� �����

n�n�� �
�
��

�
��� � ����

�
���� �����

n�n����
�
��

�
���  ����

�
���� �����

n�n����
�
��

�
���  ����

�
����� �����

 TT

����n�n����
�
��

�
���  ����

�
���� �����

n�n�� �
�
��

�
���� �����

n�n����
�
��

�
����� �����

 TT

����n�n�� �
�
��

�
��� � ����

�
���� �����

n�n����
�
��

�
���� ����

n�n�� �
�
��

�
�����

�
�����

We may use the identities in equations ����� and ����� to simplify this to�

Lm �


k
�TT

����n�n��
�
��

�
���  n�n��

�
��

�
���  n�n��

�
��

�
���� �����

 TT

����n�n��
�
��

�
���  n�n��

�
��

�
���  n�n��

�
��

�
���� �����

 TT

����n�n��
�
��

�
���  n�n��

�
��

�
���  n�n��

�
��

�
���� �����

 TT

����n�n��
�
��

�
���  n�n��

�
��

�
���  n�n��

�
��

�
����� �����

We may factor out the ��� to obtain

Lm �
���
k
��n�n��

�
���  n�n��

�
���  n�n��

�
����T

T

��� �����

 �n�n��
�
���  n�n��

�
���  n�n��

�
����T

T

��� �����

 �n�n��
�
���  n�n��

�
���  n�n��

�
����T

T

��� �����

 �n�n��
�
���  n�n��

�
���  n�n��

�
����T

T

��� �����
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We can write this more compactly as a sum over all the positive permutations
of �� �� �� ���

Lm �
���
k

X
�i���i�	�perm������	

ni�ni��
i�
i�
�i�T

T

i�
�i� ����

We have to this point used Ld � ������ Since our singly textured plane
representation is homogeneous� we may multiply through by k

���
to obtain�

Ld �
�����

����

X
�i� ��i�	�perm������	

ni�ni��
i�
i�
�i�i� �����

Lm �
X

�i���i�	�perm� �����	

ni�ni��
i�
i�
�i�T

T

i�
�i� �����

L� �
X

�i���i�	�perm� �����	

ni��
i�
i�
�i�T

T

i�
�i� �����

Since the �i are all in the same direction� we may see that

�i�i��
i�
i�

���
� ��i���i��

T��i���i�� �����

We may also de�ne our signed magnitude

j�i��jj �
�ij

j�����j
�����

Note that this is the signed magnitude� whose absolute value is equal to the
magnitude of the cross product� By using the above relations and dividing
through by ������ we obtain the desiderata�
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